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Abstract

This paper considers the matrix-weighted consensus problem with different assumptions on the agent’s dynamical model (single-, double
integrator with uncertainty or deterministic disturbance) and on the interaction topologies (leaderless and leader-follower graphs). Several
decentralized control laws are proposed to make the multi-agent systems asymptotically reach a consensus and reject the effect of the
uncertainty and deterministic disturbance. For each proposed consensus law, mathematical analysis is given and reinforced by numerical

simulations.
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Symbols

Symbols Description

R the set of real numbers

RY, R™>n the set of d-dimensional vectors
and m x n matrices with real en-
tries

a,b,c,a,B,v,... scalars

ab,c,... vectors

A B,C,... matrices

ker(A), im(A) the kernel and image of matrix A

I, the identity matrix of order n

1, the vector in R” with all entries 1

0, the n X m zero matrix

AT the transpose of matrix A

A>0(A>0) matrix A is positive semidefinite
(resp., positive definite)

vec(Xy,...,X,) X/ ,...,x, "

diag(x) the diagonal matrix with diagonal

entries in X

blkdiag(Aj,...,A,) the block diagonal matrix with di-

agonal blocks Ay,...,A,,

@ Kronecker product
IIxll,p the p-norm of a vector x (p > 1)
[Ix(0)||.2. the oo norm of the function x,

which is equal to sup,~ [|X(t) e

Abbreviations

MASs multi-agent systems
MWC  matrix-weighted consensus
SMC  sliding-mode control

Tém tit

Nbi dung ctia bai bdo nay xoay quanh vin d& dong thuan trong hé da
tac ti, trong do6 tuong tac gilta cac tic ti dude mo ta béi mot do thi
trong s6 ma tran. Ching toi xem xét bai todn véi nhitng gia thuyét
khéc nhau vé mo hinh cdia tac tif (khau tich phan bac nhit hoic khau
tich phan kép bi anh hudng béi nhiéu tién dinh va bt dinh mo hinh
dang cdng) va ciu triic tuong tic gifta cic tic ti (khong cé tic ti
dan dudng hoic tdc ti din dudng - tic tif theo sau). Mot s6 luit dong
thun phi tap trung dudc dé xuit dé dua moi tic tit vé khong gian dong
thuin dong thdi loai bo anh huéng clia bat dinh md hinh va nhiéu tién
dinh. Bai bdo trinh bay c4c chiing minh to4n hoc va két qua mo phong
tuong ting v6i mbi luat dong thuin dugc dé xuét.

1. Introduction

Recently, consensus algorithms and their applications have
received much research attention. Notable applications of the
consensus algorithm on the control of multi-agent systems
include network synchronization, formation control, distributed
optimization, and modeling of social influence networks.

In the consensus algorithm, each agent has a state variable,
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Figure 1: Examples of multiplex- and matrix-weight networks. There are 4 subsystems (or agents) in each network. Each agent has 4 state
variables classified into 4 layers. Each state variable is denoted by small circles. A segment connecting two nodes represents an interconnection
between the state variables of two agents. A cross-layer interconnection connects two nodes from different layers. In multiplex networks,
interconnections between nodes from the same layer. In matrix-weighted networks, cross-layer interconnections between agents are allowed.

which can be updated based on a weighted sum of the relative
states with regard to its neighboring agents. The information
flow of the network, or in other words, the pattern of inter-
actions between the agents, is usually captured by a graph
which is possibly weighted by different scalar weights. It is
well-known that the state variables of all agents asymptoti-
cally converge to a common value if and only if the graph is
connected.

Multiplex networks have been proposed to model multi-agent
systems, in which each agent possesses a d > 2-dimensional
state vector divided into d layers. The interactions between
agents (subsystems) are separated for each layer and can be
characterized by d different scalar-weighted graphs [11, [5].
A typical example of multiplex network is a traffic network
between different cities, in which each layers of the network
represents a distinguished means of transportation (for exam-
ples, air-way, road, waterway, railway, and subway).

From a simple reasoning, it is natural to extend the definition of
the multiplex network by allowing cross-layer interactions [4]
(see Figure 1 for an illustration of these concepts). It turns out
that cross-layer interactions can have several physical inter-
pretations in control of multi-agent systems. For example, the
authors in [2] considered a distributed estimation problem, in
which a covariance matrix is associated with each edge, and
defined the term matrix-weighted Laplacian. Analogies be-
tween a network with matrix weights and an electrical network
were derived in [3]. Matrix-weighted Laplacian was also found
in [25], where the authors studied the synchronization of multi-
dimensional coupled mechanical and electrical oscillators. In
bearing-based formation control and network localization, the
rigidity of a framework can be determined from the bearing
Laplacian, of which each block entry is an orthogonal projec-
tion matrix [32,33]. An opinion dynamic model was proposed
in [1], where the strength of interactions between individuals
are captured by state-dependent matrix weights.

Matrix-weighted graphs with positive semidefinite matrix
weights and matrix weighted consensus algorithm were firstly
studied in [23]. Several algebraic graph conditions for consen-
sus and clustering behaviors of the network under the matrix-
weighted consensus algorithm was also proposed. Under the

matrix-weighted consensus algorithm, connectedness of the
graph does not ensure the agents to reach a consensus. More-
over, the system may asymptotically achieve a configuration
in which disagreement between neighboring agents and con-
sensus between agents without direct interactions happen at
the same time (see Figure 2). The asymptotic behavior of a
system under the matrix-weighted consensus algorithm de-
pends jointly on the distribution and actual values of the matrix
weights in the graph.

The authors in [12] provided several graphical conditions for
consensus and clustering on a matrix-weighted network. Con-
trollability and observability of matrix-weighted networks were
studied in [19,26]. Methods to synthesize matrix-weighted net-
works based on some performance indices of the system are
considered in [7, 10]. Several discrete-time matrix-weighted
consensus algorithms were proposed in [16,22]. Further ex-
tensions, including matrix-weighted consensus with switching
network topologies, or bipartite matrix-weighted consensus
have been recently examined, for examples, see [8, 14,20, 28].

Most existing works only consider the leaderless- or the leader-
follower matrix-weighted consensus problem with ideal agents’
dynamics and with stationary leader agents. In many scenarios,
the effect of model’s uncertainties or deterministic disturbances
from the environment on the agreement dynamics are unavoid-
able. Specifically, when we restrict the graph to be undirected
(or leaderless), the vector of uncertainties and disturbances
can be decomposed into two parts: the first part lies along
the consensus space and the second part is orthogonal to the
consensus space. If each agent can sense their relative states,
the first part of the vector made the system drift while the
second part can be compensated by an appropriated control
law [31]. Decentralized sliding-mode based controllers and
observers have been proposed for scalar-weighted consensus
under different assumptions on agents’ dynamic model, for
examples, see [9,27,30] and the references therein. In this pa-
per, we firstly consider leaderless (undirected) matrix-weighted
networks and propose consensus laws for single- and double-
integrator agents with model uncertainties. Under the mild
assumption that the kernel of the matrix-weighted Laplacian
contains only the consensus space, we show that the system can
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Figure 2: A matrix weighted graph of 5 vertices and 6 edges. Under
the matrix-weighted consensus algorithm, the agents converge to
four different clusters (denoted by dashed lines) for almost all initial
conditions.

asymptotically reach the consensus space under the proposed
algorithms. Next, for leader-follower typologies, we show that
the leaders’ velocity can be considered as a disturbances acting
on the system, which drives the system from the consensus
space. The control law designed for agents, thus, should be
able to reject the disturbance [5, 13]. We propose consensus
tracking laws for single- and double-integrator follower agents
under the assumption that the leaders move with a common
velocity, which is uniformly continuous bounded. It is then
shown that the followers asymptotically achieve velocity con-
sensus with the leaders. Position consensus of the system is
asymptotically achieved if the leaders are initiated at the same
location. In case the leaders are not initially rendezvoused, the
followers are asymptotic to different trajectories that jointly
depend on the leaders’ positions and the matrix weights. There
is no guarantee that the agents positions will be contained in
the convex hull of the leaders’ positions as in the scalar weight
case. Thus, this paper extends the result presented in our con-
ference paper [18] by both the graph topology and the agents’
dynamic models.

The remainder of this paper is organized as follows. Section 2
gives background on matrix-weighted graphs and formulates
the problem. Sections 3 and 4 propose matrix-weighted consen-
sus algorithms for matrix-weighted networks with leaderless
and leader-follower topologies and provide corresponding con-
vergence proofs. Simulation results for proposed consensus
laws are then provided in Section 4, and finally, Section 5
concludes the paper.

2. Preliminaries

2.1. Matrix-weighted graphs

An undirected matrix weighted graph ¢ is defined by a triple
= (V,&. W), where ¥ = {1,...,n} is the vertex set, & C
¥ x ¥ is the edge set,' and # = {W;;}; jjes is the set of
symmetric positive definite or positive semidefinite matrix
weights corresponding to the edges in &. Clearly, if d = 1, we
get the usual scalar weighted graph. For undirected graphs (or
leaderless topology), it is assumed that W;; = W ;.

The matrix weighted adjacency matrix of ¢ is a block matrix
A =[A;j] € R with the block entries

W ji
Aii = J
' 04xa,

'In this paper, self-loops of the form (i,i) are excluded in the graph.

(i) eé,
(i) ¢ &

For each vertex i € ¥, the neighbor set of i is defined as
Ai={je 7| (j,i) € &}. The degree of the vertex i and the
matrix-weighted degree matrix are defined as D; = 2721 A;j
and D = blkdiag(Dy,...,D,), respectively. Most properties of
the matrix-weighted graph are related with the matrix-weighted
Laplacian, which is defined as L = D — A. For leaderless
topology, L € R¥>4" js symmetric, positive semidefinite, and
ker(L) 2 im(1, ®1,).

From the vertex set ¥, we consider a partition {¥7,7r}
satisfying Y2 # 0, ¥ £ 0, ¥V = VLU ¥p and VLN ¥F = 0.
Without loss of generality, we can label the vertices so that
Y, =A{1,..,1}, Y& = {l+1,...,n}, and f = n—1, where
1<i<n-—1.

According to this partition of ', we can express the matrix-
weighted Laplacian in the following form

L— {LLL LLF}
Lrr Lrr|’

ey

where Ly, € R4 L =L}, € R¥>4f and Ly € RV >4/,
Several useful properties of the matrix-weighted graphs, of
which proofs were provided in [18,23,24], are summarized in
the following lemma.

Lemma 1. Suppose that rank(L) = dn—d and d > 1, then
(i) ker(L) =im(1,®1y);
(ii) Let the eigenvalues of L be givenas 0 =41 =... = Ay <
Aas1 < ... < Ap, there exists a positive definite matrix P

such thatP =P >0 and L = PAP';
(iii) Lrr is symmetric and positive definite;

(iv) Dy, i =1,...,n, is symmetric, positive definite;
(v) Each block row sum of the matrix R = —L;}LFL equals
to 1.

2.2. Problem formulation

Consider a system of #n > 2 agents interacting over a matrix-
weighted graph ¢. To characterize the system, let each agent
i be associated with a vertex in ¥ and a state vector X; € R¢,
d > 1. If agent i has information from agent j, there is an edge
(j,i) € &, with the corresponding matrix weight W ;; = W]Ti >
0.

Let x = vec(xp, . ..,X,) € R, the multi-agent system is said to
achieve a consensus if and only if x € ker(L) = {x € R¥"| x; =
Xj,Vl',j S 7/}

For the leaderless interaction topology, we assume that the
matrix-weighted Laplacian L is undirected and satisfies
rank(L) = dn —d. The dynamic of n agents are given as follows

(i) single-integrator perturbed by uncertainty and disturbance
X,-:ul-+f,-(t)7 i=1,...,n, 2)

where x;, u;,f;(t) € R? are respectively the state, the con-
trol input, and the vector of uncertainty and disturbance

of agent i.
(ii) double-integrator perturbed by uncertainty and distur-
bance
Xi =Y
y,-:u,-—|—f,~(t), i=1,...,n, 3)

where [x;,y,]" € R¥ u,,fi(t) € R?, are respectively the
state, the control input, and the vector of uncertainty and
disturbance of agent i.
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For both cases, we assume that f;(z) satisfies ||f;(2)] .« < 7,
where y > 0. The agents do not know f;(#), however, the upper
bound 7 is available to agent i.

Next, suppose that the interaction graph has a leader-follower
topology. There are / > 1 leaders and f = n — [ followers in
the system. The interactions between leaders and followers are
uni-directional, i.e., only the followers sense the relative states
with regard to the leaders. However, the interactions between
followers are bi-directional. It follows that the matrix-weighted
Laplacian in this case is represented by

IL— Ourxar Oaixar '
Lrr  Lpr

Let the leaders be modeled by the equation

% =hi(t), i=1,....1. @

where h;(¢) are bounded, uniformly continuous functions satis-
fying |[h;(1)[|.2. < B, ||hi(t)] =z < 1. B,n > 0. The follower
agents i = [+ 1,...,n, do not know h;(¢) but have information
on the upper bounds f3,1. The followers are modeled by the
perturbed single- or double integrators, i.e., the models (2) or
(3).2

For all types of agent’s models studied in this paper, our objec-
tive is designing decentralized algorithm for each agent using
the local variables (x; and/or y;) and the relative variables
{Aij(xi —X;)} jes; and/or {A;;(X; —X;)} jc 4 so that x — C,
ast — +oo.

3. Matrix-weighted consensus with leaderless
topology

In this section, it is assumed that the agents’ interactions are
bi-directional and the corresponding matrix-weighted graph is
undirected. We will propose matrix-weighted consensus algo-
rithms for networks of single-integrator and double-integrator
agents with disturbances and uncertainties.

3.1. Single-integrator agents

Let the agents be modeled by the single integrator model with
uncertainties (2). The algorithm designed for each agent is
given by

lll'=—k Z AingIl(Z Aij(Xi—Xj)>, i=1,...,n, (5)
jeN jeN

where k > 0 is a control gain and the signum function sgn(x) is
defined component-wise for each vector x = [xi,...,x4] T € RY.

That is, sgn(x) = [sgn(x1),...,sgn(xg)] " and
—1, ifx; <O,

sgn(x;) = 0, ifx;=0, ,i=1,....d.
1, ifx>0.

Then, the n-agent system is given in matrix form as follows:
x = —kLsgn(Lx) +£(z). (6)

Letx= % nXi= %(I,T ®1,)x be the average state of n agents

attimet >0.Thenx = 1(1] @I,)x = 1y  f; =T With the

n

2We can interpret x; and y; as the position and velocity of agent i in the
d-dimensional space, respectively.

variable transformation q = x— 1, ®X, it follows that Lq = Lx.
We can express the q-dynamic as follows:

q = —kLsgn(Lq) +r(1), 0]

where r = f— 1, ® f satisfies (1, ® I;)r = 0. It follows that
q L ker(1,®1,).

Since sgn(+) is discontinuous, we understand the solution of
(7) in Fillipov sense [21], i.e.,

q € —kLK[sgn](Lq) +r(¢),

where K[f](x) denotes the Filippov differential inclusion,

1, ifx <0,
sgn(x;)) =< [-1,1], ifx;=0, ,foralli=1,....d.
1, ifx>0.

Consider the Lyapunov function V (¢,q) =V (q) = %qTq which
is positive definite, radially unbounded. Because for each x; €
R, we have x;K[sgn](x;) = |x;| [21], we have x" K[sgn](x) =
Y&, x| = [Ix||1. Thus, it follows that
Ve Yy n'Kla]=q' (—kLK[sgn](Lq)+r(r))
neov

= —k|Lqfli +q"r(). ®)
Since q L ker(L), we have [[Lq[li = [[Lql| = As+1/lq]l =
V2241 |ql|1. Tt follows that

V=—k|Lali ~q'f
< —V2kas gl + alli 1]

< V2l + gl 8] .
<~ (V2,1 — )l
< —K‘V%, ©

where & = v/2(v/2kA4.1 — @) > 0. To show finite-time con-
vergence of V to 0, we follow the discussion in [17][Thm. 1].
If V(¢) > 0,Vt > 0, then it follows from (9) that

L YOy kg
5/v<0) N = _5/0 a, 1o
ori.e.,

0< V) < \/V(O)—g(t—O). 11

When ¢ is large enough, the right hand side of the inequality
(11) becomes negative, which causes a contradiction. This
contradiction implies that 37 > 0:V(t) =0 and for ¢t > T.
This implies that

Lq(r) =Lx(r) =0,

fort > T, i.e., the x(¢t) € ker(L) for ¢t > T. Thus, the system
achieves finite time consensus.

3.2. Double-integrator agents

Let the agents be modeled by the double integrator with uncer-
tainties (3). Define the error variables

e =y;+ Z Ajj(xi —x;),
JjeN;
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and the sliding manifolds
t

s,'ze,-+7t/ sig®(ei(T))dr=0g, i=1,....n, (12)
0

where A > 0 is a positive scalar and o € (0,1). Defining the

stacked variables s = vec(sy,...,s,), e = vec(ey,...,e,), we
have
e=y+Lx, (13)
s:e+7L/Ot sig?(e(1))dT = 04, (14)
It follows that we need to design u such that
$=u+Ly+f+Asig*(y +Lx) = 0y,. (15)
Consider the Lyapunov function V| = %sTs, we have
Vi=s' (u+Ly+f+Asig(y+Lx)).
Let the control law be designed as
u = —ksgn(s) — Ly — Asig¥(y + Lx), (16)
where k > 7, it follows that
Vi e V*e = —k|s||, —s f

< —(k—[Ifll)l[sl]s

< —\V2k—p)V1, (17

and this implies the existence of 77 > 0 such that s(r) =
04,,V¢ > 0. This implies &€ = —Asig®(e) fort > T1.

Next, consider the function V5 = %eTe, for t > Ti, we have

Vo = —Ae'sig%(e)

n d
=AY ) leal*!
i=lk=1
n 4 a+l
< 2Y Y el (18)

Il
—_
~
Il

By applying Lemma 2 for % < “;1 < 1, it follows that
a+l
2

a+1

o+l
=272V, ? .Thus,

d a+l n d
i legl T > (T X lel)
it follows from (18) that

V(1) < —kaVy T (1), Ve > T, (19)
where K, = 12‘17“. This implies the existence of 7, > T; such
that e(z) = 04, for all t > T5.

Finally, for t > T, y = —Lx and thus, we arrive at the usual
matrix-weighted consensus equation X(t) = —Lx(¢), Vt > T».
Thus, x(t) — ker(L) as t — +oo.

4. Matrix-weighted consensus with leader-
follower topology

In this section, we study the matrix-weighted consensus track-
ing problem when the interaction graph is given by a leader-
follower topology. That is, there are several leaders whose
follow some deterministic reference trajectories. Two models
of the followers will be considered in this section including
the single-integrator and the double-integrator models per-
turbed with uncertainties. In order to achieve a consensus, the
followers needs to track the leaders’ position.

Figure 3: A matrix weighted graph of 5 vertices and 7 edges. Red
(respectively, black) denotes that the edge has a corresponding positive
definite (respectively, positive semidefinite) matrix weight.

4.1. Single-integrator follower agents

Let x' = vec(x,...,x;), x/ = vec(x/y1,...,%,), VI =
vec(vi,...,v;) = 1;@h, and v/ = vec(vi(,...,V,). In case
the followers are modeled by single integrators, we can write
the multi-agent systems in the following form

%! - 0,
sz} =z [uf+f— 1f®h(z)] +1,@h(),

where Z = [OIXI lef} and Z =7Z®1,.
Opxr Opxy

Let x© = vec(x1,...,x;) and x = vec(x,...,X;). Since only
the followers are responsible for consensus tracking, we define
the position error vectors

e = Z A,'j(X,-—Xj)
JEN
n 1
= Y Ajxi—x)+ Y Aij(xi—xj), (20)
j=1+1 j=1

where i = [+ 1,...,n. Then, by defining the vector e/ =
vec(ejy1,---,€,), we have

ef = LFLXL + LFFXF.

If the leaders’ state vector satisfies x1(0) = ... = x;(0), it fol-
lows that x- = 1; ® x; and

ef =Lp (1, ®x1) +Lprx”

=L (1; ®1,)x; + (L' —blkdiag (L (1, ®1,)))x",
(21

where L is the matrix-weighted Laplacian associated with the
induced sub-graph with vertices in ;. Due to property of a
matrix-weighted Laplacian, L'x" = L'(x — 1, ®x;). Com-
bining with L. (1; ®1,)x; = blkdiag (L. (1, ®1,)) (1, ®x1),
it follows that e/ = Lpp(xf —1;®x;) and &/ = Lpp(uf +£—
1;® h).

Consider the Lyapunov function V = 1(ef) "L,/ which
is positive definite and radially unbounded. Then, we have
L (Lep)lleF |3 < V < 12,08 (L) €. The time deriva-
tive of V is given as follows

V=" +f-1,h). (22)

The consensus tracking law for the system is then designed as

F

ul = —kjef —kysgn(el), (23)
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Figure 4: The leaderless matrix-weighted consensus system under
the control law (6).

where k1 > 0 and k, > ||h(¢)|| .« + ||f(#)]|.«. = Y+ B- Under
the consensus tracking law (23), we have

eV = (&) (—kie" —kysgn(e”) +f—1;®h)
< —kile” |3 —kalle” |1 + e 1 (|Ifll 2 + 1 @D 2.)
< —kifle" 3~ (ka—v—B)lle"[Is
< (k27— B)V/ 2hin (Lep)V 2.
This implies the existence of T > 0 such that V(1) =0ast > T.
Therefore, e = LprxL + Lppx” = 0, which implies that xf =

—L;};LFLXL =—-R(1;®x;) =1y ®x,. Thus, all agents will
track the leader’s trajectory in finite time.

Note that the consensus tracking law written for each agent is
given by

u; = —kl Z Aij(Xi—Xj)

JEN

—kosgn Z Al]

JEN

-x;) |, 24

where i =/ +1,...,n, and it is distributed in the sense that it
uses only relative variables {X; — X} jc 4.

1 5 T T T T
— — —Trajectory
b, O Position at t=0s
1 O Position at t=1s
101 W O Position at t=3s | -
/ Position at t=5s
I/ (O Position at t=8s
/ \ Position at t=12s
5t ®\ i O Position at t=15s| |
NI
R &'
> . \
[N 9
@_ | ' O
or \/ @§ 1
(NO)
| ALY /
tobv g,
Vo %\\/
Vo A
5t \ @V h :
®é]5 A\ \
/
%
10 . . . .
-10 -5 0 5 10 15
X
(a) Trajectories of 5 agents
° ° ' Gl
J— J— z(t
S T I
3 31 3 32 08
— Ty — 42 07
2 —— 51 2 52
= ! s!
g, I
! ! 0:3
2 2 02
3 -3 0.1
740 5 10 15 740 5 10 15 00 5 10 15
Time [s] Time [s] Time [s]

(¢) The normalized

(b) Followers’ velocities in x-and y—axis -
disagreement vector

Figure 5: Simulation results of the 5-agent system under the control
law (16).

4.2. Double-integrator follower agents

Let the followers be modeled by the perturbed double-
integrator models as in (3). We will design a consensus tracking
law based on the sliding-mode control approach [18]. Define
the error variables as follows

i = Z Aji(xi —x;),

jet

€yi = Z Ay

JEN;

yij),i=1+1,.

Then, we have ¢&,; = e,;. Define the sliding variable s; =
Aey + e,;, then §; = },eyi + €&y = QLZjEJ%Aij(y,' — y]') +
):je./% A;j(¥i —¥,)- In vector form, we can write
= LFF(X -1;®x),
rr(v" —1;®h),
=Lrr(A(x" —1;@x;)+v' —1;®h),
§=Lpr(Av' —2(1;2h)+u” +f—1,2h).
The equivalence control part is given from equation

$lp— 07— odf—odf as “eq —AvE.
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For the normal control part, consider the function V =
%STL;}S, we have

V= ST(ll]}(“/—ﬂ.(lf ®V1)+f—1f®h).

Thus, by choosing u; = —kis — kasgn(s), where k; > 0, kp >
AB +n, we have

V< —kilisll3— (ko= 2B —m)]sllx

< —(ka=AB = 1)/ 2umin(Lpr )V 2. (25)

It follows from equation (25) that V — 0 in finite time. It
follows that there exists 7 > 0 such that s(¢) = 047 for t >
T. Fort > T, we have A¢&, + e, = 0,4, which implies e, =
Lrr(xl — 1;®h) — 04. Since Ly is invertible, it follows
that x" — 1 F®Xj ast — oo, or all agents eventually track the
leaders’ positions.

It is not hard to check that the consensus tracking law of each
agent, given as

u; = —Av; —kis; —kosgn(s;), i=1+1,...,n, (26)

uses only local and relative variables, and thus, it is decentral-
ized.

5. Simulation results

This section provides simulation results for the proposed
matrix-weighted consensus laws in the previous sections.

5.1. Leaderless matrix-weighted consensus

Consider the five-agent system which has the interaction graph
% as depicted in Figure 3. In this graph, matrix weights asso-
ciated with 7 edges are chosen as follows

Ap = 3Ay5 = 6D,

30 0 0
A= [O 1] , Az =3A3y = {O 3] ;

30 1 -1
A35: |:0 O],andA45: |:_1 1:|.

It is not hard to check that the matrix weighted Laplacian of G
satisfies rank(L) =2n—2 = 8.

5.1.1. Single-integrator agents

We simulate the 5-agent system under the matrix-weighted
consensus (6) with k = 5. The disturbances are selected as
follows

3cos(3it+ 5§ )

—2cos(r) @7

f,-(t):[ ],i:l,...,s,wzo.
Simulation results are shown in Figure 4. Figure 4 (a) shows the
trajectories of the agents and denote their positions at several
time instances (when we interpret the state vector x; € R? of
each agent as its absolute position in the x- and y— axes of
a 2D plane). Figure 4 (b) shows the states in the x- and y-
coordinates and Figure 4 (c) plots the normalized disagreement
vector ||||:((6))|||| , where z(¢) = Lx(t), t > 0. It can be seen that the

system achieves a consensus in less than 0.5 second, which is
consistent with the analysis.

5.1.2. Double-integrator agents

Next, the same system is considered under the consensus law
(16) with k =7 and A = 1. The initial velocities of five agents
arev;=0,,i=1,...,5.

The simulation results are provided in Figure 5, with
agents’ positions being marked at different time instants r =
0,1,3,5,8,12, and 15 seconds.

All agents asymptotically achieve consensus in both position
and velocity after about 15 seconds. After achieving a consen-
sus, their motions are driven by the component of the vector
f = vec(fy,...,f,) which lies in the space ker(L) (and thus
perpendicular to im(L)).

5.2. Leader-follower matrix-weighted consensus
5.2.1. Single-integrator followers

We consider the same 5 agent system as in the previous simu-
lations, but agent 1 is now chosen as the leader, moving with a
reference velocity given by

3cos(3t+ %

—2cos(t) (28)

h(r) = [ )],wzo.

The trajectory of the leader is thus a Lissajous curve. The
followers are moving under the consensus tracking law (23)
with ky = 1 and kp = 12.

Simulation results are shown in the Figure 6. The system
achieves position consensus after about 0.25 seconds.

5.2.2. Single-integrators with different initial leaders’ positions

Next, we consider an 8-agent system whose the interaction
graph is depicted in Figure 7. The matrix weights are chosen
as follows

A1z =2A55 = 6A34 = 6Ay5 = 6l

30 11

30 0 0
3A57 = Az = [O 0] , Ase = [O 1] ,
1 -1 1 —-0.5
As1 = [—1 1 } ) Au = [—0.5 0.5 ]

Agents 1, 2, 3 are chosen as leaders and they are initially
located at three vertices of a right triangle. The followers adopt
the consensus law (23). It is shown in Figure 8 that agents 4,
5 and 8 asymptotically reaches inside the convex hull formed
by 3 leaders while agents 6, 7 stay outside. Note that if the
graph is scalar-weighted and connected, under the consensus
tracking algorithm (23), all followers should asymptotically
reach inside the convex hull of leaders’ positions, see e.g.,
the reference [6] on the containment control problem with
scalar weighted graph. Thus, this simulation displays a different
property of the matrix-weighted consensus in comparison with
the scalar-weighted consensus algorithm.

5.2.3. Double-integrator followers

Finally, we return to the 5-agent system with the matrix
weighted graph as depicted in Figure 3. The leader (agent
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Figure 6: The 5-agent leader-follower consensus system under the
control law (23).

1) moves with velocity as given in equation (28). Follower
agents 2,...,5 move under the consensus tracking law (26).
Simulation results are depicted in Figure 9. The positions of 5
agents at several time instance are depicted in Fig. 9 (a). It can
be seen that 4 follower agents asymptotically track and follow
the leader’s trajectory. The consensus of agents’ velocities
along two coordinates are shown in Fig. 9 (b). The system
reaches the sliding surface after about 1.22 second. Fig. 9
(c) shows the changes of the normalized disagreement vector
versus time.

6. Conclusions

This paper studied the matrix-weighted consensus problem
with uncertainties for both leaderless and leader-follower
topologies. Under different assumptions on the agents’ models,
several matrix-weighted consensus algorithms were designed
with the ability to reject uncertainties or disturbances acting
on the system, thus, provide robustness to the matrix-weighted
consensus algorithm.

A. Useful lemma

Lemma 2. [29]If&,....E;>0and 0 < p <1, then

(29)

d p d
Z &) < Z &
i=1 i=1

Figure 7: A matrix-weighted graph of 8 vertices ans 12 edges.
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Figure 8: The leader-follower consensus system under the control law
(23) when 3 leaders are not initially positioned at the same position.
Followers 4,5, 8 asymptotically move inside the convex hull of lead-
ers’ positions (the moving triangle) but agents 6 and 7 do not.
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