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Abstract 
 
In this paper, a modified feedback error learning approach (called MFEL) is proposed for a nonlinear system. In MFEL, an inverse evolu-

tionary neural (IEN) model that dynamically identifies offline all nonlinear features of the nonlinear system, provides the initial value of a 

feedforward compensator. A PID feedback control is combined with a feedforward compensator to eliminate the steady-state error and guar-

antee the global asymptotic stability of the overall system. The learning is based on the feedback error signal is employed. An adaptive back-

propagation (aBP) with self-adaptive learning rate based Sugeno Fuzzy logic is developed and employed in the MFEL to adapt well to 

disturbances and dynamic variations in its operation. To prove the effectiveness of the proposed MFEL controller, first, the benchmark 

nonlinear SISO system is used to evaluate the controller. Then, the experimental shape memory alloys (SMA) actuator is set up to test the 

controller. The simulation and experimental results proved that the proposed controller provides better results compared to the feedback 

control. 
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Tóm tắt 
Trong bài báo này, bộ điều khiển học cải tiến dựa trên thông tin sai 

số phản hồi (gọi tắt MFEL) được đề xuất cho hệ phi tuyến. Trong 

MFEL, mô hình lai nơ rôn - tiến hóa được sử dụng để nhận dạng 

offline đặc tính động học ngược của hệ phi tuyến, và sau đó được 

dùng để khởi tạo các trọng số của bộ điều khiển thuận. Bộ điều khiển 

PID được cộng với bộ điều khiển thuận nhằm giảm sai số và đảm 

bảo ổn định tiệm cận toàn cục. Tín hiệu ra của bộ điều khiển PID 

được xem như là sai số học và được sử dụng để chỉnh định online bộ 

điều khiển thuận dựa trên thuật toán lan truyền ngược tự thích nghi 

hệ số học (gọi tắt aBP) dựa vào mô hình mờ Sugeno. Việc học online 

này nhằm giúp MFEL thích nghi tốt với nhiễu động và các thay đổi 

trong quá trình hệ thống hoạt động. Để chứng minh hiệu quả của 

MFEL, đầu tiên, hệ phi tuyến SISO chuẩn được dùng để kiểm chứng. 

Sau đó, thiết bị chấp hành thực nghiệm dùng SMA được thiết lập để 

kiểm chứng. Các kết quả mô phỏng và thực nghiệm đã chứng tỏ chất 

lượng vượt trội của MFEL so với bộ điều khiển phản hồi PID.  

1. Introduction 

Shape memory alloys (SMA) are materials that can be de-

formed at low temperature and recover their original shape 

upon heating. Shape memory effect that is a highly nonlinear 

hysteresis phenomenon, occurs due to their native capability 

to undergo reversible changes of the crystallographic struc-

ture, depending on temperature and state of stress. SMA has 

been recently used in many applications such as biomedical 

engineering [1], micro-robotics [2], aerospace applications 

[3], and other fields. Especially, SMA springs have been ap-

plied as actuators in various applications in combination with 

bias springs since they respond and generate force at the same 

time by temperature change. However, the hysteresis behav-

ior of SMA makes it become the challenge in obtaining high 

precision control. 

 

To address the tracking precision control of the SMA actuator, 

the most common control scheme was the inverse compensa-

tion. The main idea is to identify the nonlinearity hysteresis 

model first, and then to use the inverse model for providing 

the appropriate control input for compensating the hysteresis 

behavior of the SMA actuator. For example, the authors [4] 

proposed a feedforward controller with an inverse rate-de-

pendent modified Prandtl–Ishlinskii model to cancel the 
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hysteresis effect for SMA actuator in trajectory tracking ap-

plications. Paper [5] introduced an inverse-Preisach model-

based feedforward approach to compensate for dynamic and 

hysteresis effects in SMA with the application. However, the 

performance of the feed-forward controller depends on the ac-

curacy hysteresis inverse model. In practice, the hysteresis 

model of the SMA actuator is sensitive to disturbances result-

ing in inaccurate estimation. Moreover, the feedforward con-

trol approach can not eliminate steady-state offset. 

 

To overcome these drawbacks, hybrid feedforward control 

and feedback control are developed to improve the control 

quality. In [6], a hybrid control scheme which was composed 

of a feedforward controller based a hysteresis inverse Krasno-

sel’skii Pokrovskii model and a PID feedback controller was 

proposed to further improve the positioning accuracy of the 

SMA actuator. Paper [7] introduced a hybrid feedforward 

control based on the inverse Preisach model with the modified 

fuzzy sliding mode control which served as a feedback con-

troller. Paper [8] introduced a novel control strategy combin-

ing a PID controller with an inverted hysteresis compensator 

using the Prandtl-Ishlinskii model. One major disadvantage of 

these methods was that the tracking performance of the SMA 

actuator highly relies on its inverse model. Besides, the phys-

ical constraints of the input voltage of the SMA actuator are 

hardly handled by the inversion-based method.  

 

Recently, some studies used intelligent techniques to design 

an inverse compensation to cancel out the hysteretic effect and 

the proposed adaptive control law applied in the control pro-

cess. Such as paper [9] introduced a position tracking control 

system for SMA actuator using neural network feedforward 

and robust integral of signum of error feedback. Paper [10] 

used a PID neural network to describe the hysteresis nonline-

arity of the SMA actuator. Paper [11] presented a neural 

model predictive and variable structure controllers designed 

to control the rotary manipulator actuated by SMA. Paper [12] 

used a hybrid PID feedback with feedforward control based 

on an inverse generalized Prandtl–Ishlinskii model. And then, 

it is cascaded with an adaptive model reference temperature 

control to estimate the SMA electrical current for tracking the 

reference signal.  

 

In summary, to improve the quality control of SMA actuator, 

two problems need to be considered that how to obtain the 

accurate approximation of a dynamic inversion compensator 

to cancel out the effect of the nonlinearities hysteresis and 

how to adaptive online control to adapt well to disturbances 

and dynamic variations in its operation. In this paper, a mod-

ified feedback error learning (MFEL) control is proposed. The 

ideas of this approach are as follows, first, a neural NARX 

model trained by a modified differential evolution algorithm 

[13] to design an inverse compensation of SMA actuator 

based on experimental data. To eliminate the steady state's er-

ror, a hybrid an inversion compensator combined with the PID 

feedback control is realized. And final, an adaptive back-

propagation (aBP) with a self-adaptive learning rate based 

Sugeno Fuzzy logic to update online weighting values of a 

dynamic inversion compensator model as to adapt well to dis-

turbances and dynamic variations in its operation. To prove 

the effectiveness of the proposed MFEL controller, first, the 

benchmark nonlinear SISO system is used to evaluate the con-

troller. Then, the experimental shape memory alloys (SMA) 

actuator is set up to test the controller. 

2. Content 

2.1. Original feedback error learning control 

FEL controller was first proposed by Kawato [14] and the 

FEL scheme was described in Fig.1. The idea of the FEL 

scheme is to learn an inverse model or feedforward control by 

using the feedback control signal. If the feedback control sig-

nal goes to zero, then generally the error will also be zero. 
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Fig.1 Block diagram of original FEL controller 

In the FEL scheme, the CFC feedback control roles guarantee 

global asymptotic stability to the whole system. A stability of 

FEL controller was discussed by Miyamura et al. [15].  This 

stability proof was proved by lemma 1. 

 

Lemma 1. Let L(s) be a strongly positive real (SPR) transfer 

function and ℰ(t) be an arbitrary time-varying vector. Then, 

the solution z(t) of the differential equation 
𝑑𝑧(𝑡)

𝑑𝑡
= −ℰ(𝑡)𝐿(𝑠)ℰ(𝑡)𝑇𝑧(𝑡)  (1) 

tends to a constant vector z0 such that ℰ(𝑡)𝑧0 → 0 . If 

ℰ(𝑡) satisfies the so-called persistent excitation (PE) condi-

tion [16]. The above z0 is equal to 0. 

 

For a second order SISO systems, Nakanishi et al. [17] pre-

sented a Lyapunov analysis suggesting that the condition of 

SPR is a sufficient condition for asymptotic stability of the 

closedloop dynamics. The feedback gains must satisfy the 

condition
2

d pk k to guarantee the stability of FEL. 

2.2. Modified feedback error learning control 

This section presents a modified feedback error learning 

(MFEL) controller approach for nonlinear systems. The block 

diagram of the proposed controller is illustrated in Fig.2. 
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Fig.2 Block diagram of proposed MFEL controller 

The basic idea of the proposed MFEL control consists of three 

steps. First, a neural NARX model trained modified differen-

tial evolution algorithm [13] is used for offline identifying a 

dynamic inversion compensator to cancel out the effect of the 
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nonlinearities feature. Then, a hybrid feedforward control 

combined with the PID feedback control is realized. Where 

the inverse evolutionary neural NARX (IEN) model provides 

a feedforward control signal from the desired trajectory. The 

PID controller is applied to improve the precision and reject 

the steady state's error in tracking control. And final, an adap-

tive back-propagation (aBP) with a self-adaptive learning rate 

based Sugeno Fuzzy system is developed and employed in the 

MFEL to adapt well to disturbances and dynamic variations 

in its operation. Based on Fig.2, the voltage control law is 

given by 

MFEL PID IENu u u   (2) 

Where uMFEL is the control signal applied to the nonlinear sys-

tem. The feedforward control signal uIEN is provided by the 

IEN model and the control signal uPID is produced by the PID 

controller based error y REFe y y  between reference posi-

tion trajectory and position output. The PID controller output 

can be expressed as follows, 

( ) ( ) ( )
( )

0

t
y

PID p y i y d

de t
u t k e t k e d k

dt
 = + +

        

(3) 

And then, the weight values of the inversion compensator 

based IEN model are trained and adjusted online during real-

time control by the feedback error control signal 

u MFEL IENe u u  to minimize the learning error defined as, 

221 1

2 2
u MFEL IEN PIDE u u u

      
(4) 

2.2.1. Proposed IEN model 

In practice, it is very difficult to identify the inverse dynamics 

of the system by using the mathematical method. In this part, 

the neural NARX model optimized by a modified differential 

evolution algorithm is used for identifying the inverse dy-

namic model based on the experimental input-output data. 

The block diagram of the IEN model is illustrated in Fig.3. 

The structure of the inverse neural NARX model and the de-

tails of the MDE training algorithm is described in [13]. 
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Fig.3 Block diagram of IEN model 

2.2.2. An adaptive back-propagation (aBP) law 

To adjust online the weight values of the inversion compen-

sator based IEN model, an adaptive back-propagation (aBP) 

with self-adaptive learning rate based Sugeno Fuzzy logic is 

used to minimize Eu in Eq.(5) as below 

( ) ( ) uE
w w new w old

w



 = − = −
      

(5) 

Using the chain rule, we have 

( )u IEN IEN
PID

IEN

E u uE
u

w u w w

  
= = −

   
   

(6) 

The selection of the suitable learning rate λ plays an important 

role in the convergence by adaptively adjusted online the 

weight-update. If the learning rate value is too small, it needs 

much time to obtain an acceptable solution. On the contrary, 

a large learning rate value will possibly lead to oscillation, 

preventing the error Eu to converge to zero.  

 

For this reason, this part proposes a self-adaptive strategy for 

selecting the learning rate λ based on a Sugeno fuzzy logic. 

The input of the fuzzy model is the error Eu, and the derivative 

of error Eu, namely dE. The corresponding output is the learn-

ing rate λ. The Sugeno fuzzy model is constructed using the 

fuzzy rules shown in Table 1, where 
51 0; 2 5z z e−= =  

43 5z e−=  and 
34 5z e−= . The membership functions for fuzzy 

input variables are shown in Fig.4. 

 

Table 1. Fuzzy rules table for scaling learning rate 

 LN SN Zero SP LP 

LN z2 z3 z4 z4 z4 

SN z4 z3 z3 z3 z4 

Zero z3 z2 z1 z2 z3 

SP z4 z3 z3 z3 z4 

LP z4 z4 z4 z3 z2 

 

 
Fig. 4 Membership functions of the fuzzy input variables 

2.3. Results and discussion 

In this section, we study the performance and effectiveness of 

the proposed MFEL controller for a nonlinear system and its 

application to control the position of a shape memory alloy 

(SMA) actuator. 

2.3.1. The benchmark nonlinear system 

An original feedback error learning (FEL) controller approach 

is often tested on a robot arm system to validate the perfor-

mance of FEL in [15], [18]–[20]. Therefore, in this test, the 

authors use the MFEL controller to control a 1-DOF arm robot 

model that is given as, 
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Fig. 5 1-DOF arm robot model 

( ) ( ) ( ) ( ) ( ) ( )2 2
1 2 1 2 sinc cml m l t J t ml m l g t u t  + + + + =   (7) 

Where, m1 is a mass of arm. m2 is a payload. l is a length of 

arm. lc is a center of gravity position arm. J is a coefficient of 

friction. g is a gravity acceleration. u(t) is the torque control 

as input signal. ϕ(t) is the end-effector position as an output 

signal. All parameters are set up as, 

( ) ( ) ( ) ( )2 10sint t t u t  + + =          (8) 

a. Compensator based IEN model 

Firstly, the benchmark system is implemented in Simulink 

with a sampling period of 0.1 seconds. Applying square waves 

with different amplitudes, the training data set and validating 

data set are collected and shown in Fig 6. Where, (a) use to 

estimate the model, (b) use to validate the IEN model.   

 
Fig. 6 Data for estimating and validating the IEN model 

Secondly, the IEN model is used for identifying the dynamic 

of a nonlinear system in Eq.(7). The IEN structure is selected 

by 3-layer feedforward neural networks with S1 hidden neu-

rons, S1 = 7; the number of generations GEN = 2000; number 

of populations NP = 62 and the 2nd order NARX structure.  

 

Fig.7 The identification performance of IEN model  

Finally, the estimation and validation process is conducted to 

identify the IEN model. Fig.7 shows that the performance of 

identification inverse dynamic for the nonlinear system. The 

results demonstrate the better identification capability of the 

IEN model. The final structure of the IEN model which 

includes a 3-layer with 4 inputs, 7 hidden nodes, and 1 output. 

The resulted weighting values of the IEN model precisely de-

scribe the nonlinear system which is used to generate the ini-

tial weight of the feedforward controller in the proposed 

MFEL controller. 

 

b. Control results 

The block diagram of the MFEL control approach applied to 

control of the nonlinear system in Eq.(7) is illustrated as Fig.8. 

The PID parameters are turned with the trial and error method 

and chosen to be 80.2pK =  and 20.5dK = . 

 
Fig.8 Block diagram of MFEL scheme in Simulink 

 

Case study 1. In this case, the closed-loop performance is ver-

ified in changing the reference signal to survey the control 

performance of the controller. Fig.9 and Fig.10 compare the 

control performance of the proposed controller and the PID 

controller in two cases of sine and step without the payload, 

respectively. All these results show that the PID controller 

causes big error values. On the contrary, the proposed control-

ler always adaptively minimizes the error value to converge 

to zero successfully. 

 

 
Fig.9 Quality control of Eq.(7) with step reference 

 

 
Fig.10 Quality control of Eq.(7) with sine reference 
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Fig.11 shows the control signal (u), where the output of the 

feedforward controller based on the IEN model (uIEN), the 

component PID controller (uPID), and the proposed MFEL 

controller (uMFEL). dv/dt is the variation of the weights in the 

hidden layer of the IEN model. dw/dt is the variation of the 

weights in the output layer of the IEN model. After a finite 

time, the feedforward control based on the IEN model learns 

the inverse dynamics of the system and take the responsibility 

of the control system. Simultaneously, the output of the com-

ponent PID controller tends to go to zero. Fig.11 also shows 

that the weights varied automatically during control operation 

in two cases of sine and step trajectory without payload, re-

spectively.  

 
Fig.11 Online learning in control of Eq.(7) 

 

Case study 2. Changing the payload of the nonlinear 1-DOF 

robot arm system in Eq.(7). Fig.12 shows the comparison re-

sults between the traditional PID controller and the proposed 

MFEL controller in two cases of sine and step trajectory with 

the payload, respectively. 

 

 
Fig.12 Quality control of Eq.(7) with  payload 

 
Fig.13 Online learning in control of Eq.(7) with payload 

The figure shows that the performance of the MFEL control-

ler is better than the PID controller. Fig.13 shows the overall 

control signal (uMFEL), the output of the feedforward controller 

based on the IEN model (uIEN) and the component PID con-

troller (uPID). Fig.13 also shows that the weights varied auto-

matically during control operation in two cases of sine and 

step trajectory with payload, respectively. 

 

Case study 3. Impacting the noise with var 0.0001= , 

0mean=  and 0.5secTs =  to the nonlinear system.  

 

 
Fig.14 Quality control of Eq.(7) with noise 

 

 
Fig.15 Online learning in control of Eq.(7) with noise 

 

Fig.14 shows the comparison results between the traditional 

PID controller and the proposed MFEL controller in case of 

step trajectory. The figure shows that the performance of the 

MFEL controller is better than the PID controller. Fig.15 

shows the overall control signal (uMFEL), the output of the 

feedforward controller based on the IEN model (uIEN) and the 

component PID controller (uPID). Fig.15 also shows that the 

weights varied automatically during control. 

 

In summary, the proposed modified feedback error learning 

(MFEL) control used the online auto-tuning capability of the 

aBP learning algorithm to accurately control the nonlinear 

SISO system. Based on the above results, we see that the pro-

posed controller had an achieving stable high-performance 

control and the error between the reference signal and the out-

put signal being optimized. The proposed controller had also 

strong adaptive ability and robustness in the presence of ex-

ternal disturbances and payload. 
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2.3.2. Applied in tracking control of SMA actuator 

a. Configuration of SMA actuator system 

An experimental SMA actuator architecture is shown as 

Fig.16. The experimental setup includes SMA spring, bias 

spring, power amplifier, rotary encoder, NI-PCI 6221 card, 

and a computer. The parameters of the SMA spring actuator 

are described in Table 2. 
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Fig.16 Diagram of the experimental SMA actuator 

Table.2 Experimental device parameters 

No Devices Parameters 

1 

SMA 

spring 

actuator 

- Ni-Ti material, expansion spring 

- Wire diameter: 0.51 mm 

- Mean coil diameter: 6.0 mm 

- Generate force: 1.0 N 

2 
Rotary 

encoder 

- Resolution(pulses/rotation): 500 

- Power supply: 5V ± 10% 

3 
NI-PCI 

6221 

- National Instrument Company. 

- Two 16-bit analog outputs (833 

KS/s); 24 digital I/O; 32-bit counters 

- 16 Analog Inputs, 16-Bit, 250 KS/s. 

 
When cool, the SMA actuator can be extended to 9cm. When 

heated, it contracts to 25mm overall. A power amplifier, 

which is controlled by digital to analog converter (or DAC) 

module of NI-PCI 6221 card, is applied SMA spring to heat. 

A bias spring is connected to the SMA spring to apply a re-

storing force. A rotary encoder is mounted to the spring to 

measure the displacement of SMA spring. This feedback sig-

nal is fed into the computer through an encoder module of NI-

PCI 6221 card. The Real-Time Windows Target Toolbox of 

Matlab is used for the real-time control system. 

 
b. Compensator based the IEN model 
In this section, we find the IEN model to describe the hyste-

resis compensator of the SMA actuator. The procedure con-

sists of four basic steps as follows, 

 

 
Fig.17 Data for estimation and validation purpose 

Firstly, the SMA actuator system to generate a collection of 

experimental data relating the applied voltage input to the po-

sition output of the SMA actuator. Fig.17 shows applied volt-

age input (v-ref input) to the SMA actuator system and the 

responding position output collected. Voltage input and posi-

tion output from (0-150)[sec] are used for estimating the IEN 

model. Voltage input and position output from (150-300)[sec] 

are used for validating the IEN model. 

 

Secondly, the IEN model is created by combining the 3-layer 

with 5 neurons of the hidden layer and the 2st order NARX 

model. Where the parameters of the MDE algorithm is se-

lected as population size NP = 50, number of generations GEN 

= 2000.  

 

Finally, the estimation and validation process is conducted to 

identify the IEN model. Fig.18 shows the performance based 

on the average values of MSE on the validating process. The 

result shows that the inverse model of the SMA actuator 

achieves good performance identification. These results will 

be used to provide for the compensator control. 

 

 
Fig.18 Performance on validating the IEN model 

 

c. Experimental control results 

The control programming is designed using the real-time win-

dow target of MATLAB. The PID parameters are chosen by 

trial and error method and determined to be 

7, 0, 7p i dK K K= = = . 

 

Case study 1. Changing the reference signal to survey the po-

sition control performance of the SMA actuator. Fig.19 shows 

the performance of the proposed controller with sine reference 

and compares it to the PID controller. Fig.20 shows all control 

signals of the proposed controller. Based on the control re-

sults, we see that the proposed controller improves the quality 

significantly compared to the PID controller. And especially, 

the error learning in online updating to decrease to zero. 

 
Fig.19 Quality control of SMA with sine reference 
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Fig.20 Online learning in control with sine reference 

 
Fig.21 Quality control of SMA with triangle reference 

 

 
Fig.22 Online learning in control with triangle reference 

Similarly, Fig.21 describes the quality of controlling the SMA 

actuator with a triangle trajectory. Figure 22 describes the out-

put of the MFEL controller and the weight variations of the 

controller during the control. Based on the control results, we 

see that the MFEL control quality achieved good results de-

spite changing the reference signal and achieving much better 

quality when compared to the PID controller. Adaptation of 

the MFEL controller is shown in the reduced control error 

while the PID controller does not improve the error in the con-

trol and the weights of the forward controller be updated 

online during control to improve control quality. 

Case study 2: Changing the load by increasing the stiffness 

of spring bias to test the performance of the proposed control-

ler. Figure 23 describes the quality control with the sine ref-

erence signal when changing the load at time t = 90 sec. Figure 

24 describes the weighting variation of the MFEL controller 

during the control process. 

 
Fig.23 Quality control of SMA when changing load 

 
Fig.24 Online learning in control when changing load 

 

The results show that the performance of the MFEL controller 

quite well. When changing the load at t = 90 sec, the weight 

values of INN is online updated to guarantee the quality con-

trol. 

 

Case study 3: Generate the noise by impact to change the 

elasticity of bias spring or decrease the temperature of SMA 

by the fan and then do survey the quality control of the MFEL 

controller. Figure 25 shows the quality control with the sine 

reference signal when changing the noise. 

 
Fig.25 Quality control of SMA when changing noise 

 

In summary, the proposed MFEL controller-based evolution-

ary neural network used the online auto-tuning capability of 

the aBP learning algorithm to accurately control of SMA ac-

tuator. Moreover, the proposed controller had also strong 

adaptive ability and robustness in the presence of external dis-

turbances. 
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3. Conclusion  

In this study, a modified feedback error learning (MFEL) con-

trol is developed and successfully applied to control the non-

linear SISO system. The MFEL controller is modified from 

the original FEL version by adding an evolutionary neural net-

work and an adaptive back-propagation (aBP) with a self-

adaptive learning rate using the Sugeno Fuzzy model. The 

simulation on the benchmark nonlinear system is firstly tested 

to evaluate the performance of the MFEL controller. Then, the 

proposed controller is applied to position control of the SMA 

actuator. Experimental results prove that the proposed MFEL 

controller can learn and update the inverse hysteresis of the 

SMA actuator to reduce the tracking error to nearly zero. Fu-

ture works will study to implement the proposed MFEL con-

troller for other hysteresis nonlinear systems. 
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