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Abstract

In this paper, a modified feedback error learning approach (called MFEL) is proposed for a nonlinear system. In MFEL, an inverse evolu-
tionary neural (IEN) model that dynamically identifies offline all nonlinear features of the nonlinear system, provides the initial value of a
feedforward compensator. A PID feedback control is combined with a feedforward compensator to eliminate the steady-state error and guar-
antee the global asymptotic stability of the overall system. The learning is based on the feedback error signal is employed. An adaptive back-
propagation (aBP) with self-adaptive learning rate based Sugeno Fuzzy logic is developed and employed in the MFEL to adapt well to
disturbances and dynamic variations in its operation. To prove the effectiveness of the proposed MFEL controller, first, the benchmark
nonlinear SISO system is used to evaluate the controller. Then, the experimental shape memory alloys (SMA) actuator is set up to test the
controller. The simulation and experimental results proved that the proposed controller provides better results compared to the feedback
control.

Keywords: Adaptive Neural Control, Hysteresis Compensator, Shape Memory Alloys, Feedback Error Learning Control.

Abbreviations 1. Introduction
SMA shape memory alloys Shape memory alloys (SMA) are materials that can be de-
NARX nonlinear auto-regressive eXogenous formed at low temperature and recover their original shape
IEN inverse evolutionary neural upon heating. Shape memory effect that is a highly nonlinear
PID proportional integral derivative hysteresis phenomenon, occurs due to their native capability
MDE modified differential evolution to undergo reversible changes of the crystallographic struc-
aBP adaptive backpropagation ture, depending on temperature and state of stress. SMA has
MFEL modified feedback error learning been recently used in many applications such as biomedical
. engineering [1], micro-robotics [2], aerospace applications
Tom tat [3], and other fields. Especially, SMA springs have been ap-

Trong bai b4o nay, bo didu khién hoc cai tién dua trén thong tin sai
sb phan hdi (goi tit MFEL) duoc d& xut cho hé phi tuyén. Trong
MFEL, mé hinh lai no réon - tién héa duoc sir dung dé nhan dang
offline dic tinh dong hoc nguoc cua hé phi tuyén, va sau do duoc
dung dé khai tao cac trong s cua bo didu khién thuan. Bo diéu khién
PID duoc cong vé6i bo didu khién thuan nhim giam sai s va dam
bao én dinh tiém can toan cuc. Tin hiéu ra cua bo diéu khién PID
duwoc xem nhu 12 sai s6 hoc va dugc st dung dé chinh dinh online bo
didu khién thuan duya trén thuat toan lan truyén nguoc tu thich nghi
hé s hoc (goi tit aBP) dya vao md hinh m Sugeno. Viéc hoc online
nay nham gidp MFEL thich nghi tét véi nhidu dong va cac thay ddi
trong quéa trinh hé théng hoat déng. Dé chiing minh hiéu qua cua
MFEL, d4u tién, hé phi tuyén SISO chuén duoc dung dé kiém ching.
Sau do, thiét bi chip hanh thuc nghiém ding SMA duoc thiét 1ap dé
kiém ching. Céc két qua mo phong va thyc nghiém da chiing to chat
lwong vuot troi cia MFEL so véi bo diéu khién phan hbi PID.

plied as actuators in various applications in combination with
bias springs since they respond and generate force at the same
time by temperature change. However, the hysteresis behav-
ior of SMA makes it become the challenge in obtaining high
precision control.

To address the tracking precision control of the SMA actuator,
the most common control scheme was the inverse compensa-
tion. The main idea is to identify the nonlinearity hysteresis
model first, and then to use the inverse model for providing
the appropriate control input for compensating the hysteresis
behavior of the SMA actuator. For example, the authors [4]
proposed a feedforward controller with an inverse rate-de-
pendent modified Prandtl-Ishlinskii model to cancel the
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hysteresis effect for SMA actuator in trajectory tracking ap-
plications. Paper [5] introduced an inverse-Preisach model-
based feedforward approach to compensate for dynamic and
hysteresis effects in SMA with the application. However, the
performance of the feed-forward controller depends on the ac-
curacy hysteresis inverse model. In practice, the hysteresis
model of the SMA actuator is sensitive to disturbances result-
ing in inaccurate estimation. Moreover, the feedforward con-
trol approach can not eliminate steady-state offset.

To overcome these drawbacks, hybrid feedforward control
and feedback control are developed to improve the control
quality. In [6], a hybrid control scheme which was composed
of a feedforward controller based a hysteresis inverse Krasno-
sel’skii Pokrovskii model and a PID feedback controller was
proposed to further improve the positioning accuracy of the
SMA actuator. Paper [7] introduced a hybrid feedforward
control based on the inverse Preisach model with the modified
fuzzy sliding mode control which served as a feedback con-
troller. Paper [8] introduced a novel control strategy combin-
ing a PID controller with an inverted hysteresis compensator
using the Prandtl-Ishlinskii model. One major disadvantage of
these methods was that the tracking performance of the SMA
actuator highly relies on its inverse model. Besides, the phys-
ical constraints of the input voltage of the SMA actuator are
hardly handled by the inversion-based method.

Recently, some studies used intelligent techniques to design
an inverse compensation to cancel out the hysteretic effect and
the proposed adaptive control law applied in the control pro-
cess. Such as paper [9] introduced a position tracking control
system for SMA actuator using neural network feedforward
and robust integral of signum of error feedback. Paper [10]
used a PID neural network to describe the hysteresis nonline-
arity of the SMA actuator. Paper [11] presented a neural
model predictive and variable structure controllers designed
to control the rotary manipulator actuated by SMA. Paper [12]
used a hybrid PID feedback with feedforward control based
on an inverse generalized Prandtl-Ishlinskii model. And then,
it is cascaded with an adaptive model reference temperature
control to estimate the SMA electrical current for tracking the
reference signal.

In summary, to improve the quality control of SMA actuator,
two problems need to be considered that how to obtain the
accurate approximation of a dynamic inversion compensator
to cancel out the effect of the nonlinearities hysteresis and
how to adaptive online control to adapt well to disturbances
and dynamic variations in its operation. In this paper, a mod-
ified feedback error learning (MFEL) control is proposed. The
ideas of this approach are as follows, first, a neural NARX
model trained by a modified differential evolution algorithm
[13] to design an inverse compensation of SMA actuator
based on experimental data. To eliminate the steady state's er-
ror, a hybrid an inversion compensator combined with the PID
feedback control is realized. And final, an adaptive back-
propagation (aBP) with a self-adaptive learning rate based
Sugeno Fuzzy logic to update online weighting values of a
dynamic inversion compensator model as to adapt well to dis-
turbances and dynamic variations in its operation. To prove
the effectiveness of the proposed MFEL controller, first, the

benchmark nonlinear SISO system is used to evaluate the con-
troller. Then, the experimental shape memory alloys (SMA)
actuator is set up to test the controller.

2. Content

2.1. Original feedback error learning control

FEL controller was first proposed by Kawato [14] and the
FEL scheme was described in Fig.1. The idea of the FEL
scheme is to learn an inverse model or feedforward control by
using the feedback control signal. If the feedback control sig-
nal goes to zero, then generally the error will also be zero.

Feedforward Controller

(Inverse model)
Conventional
Feedback Controller

(CFC)

Yret

b

Nonlinear
system

Fig.1 Block diagram of original FEL controller
In the FEL scheme, the CFC feedback control roles guarantee
global asymptotic stability to the whole system. A stability of
FEL controller was discussed by Miyamura et al. [15]. This
stability proof was proved by lemma 1.

Lemma 1. Let L(s) be a strongly positive real (SPR) transfer
function and &(t) be an arbitrary time-varying vector. Then,
the solution z(t) of the differential equation

E0 = —eOL()ED2(0) (1)
tends to a constant vector zo such that E(t)zy - 0. If

E(t) satisfies the so-called persistent excitation (PE) condi-
tion [16]. The above z; is equal to 0.

For a second order SISO systems, Nakanishi et al. [17] pre-
sented a Lyapunov analysis suggesting that the condition of
SPR is a sufficient condition for asymptotic stability of the
closedloop dynamics. The feedback gains must satisfy the

conditionk? > k, to guarantee the stability of FEL.

2.2. Modified feedback error learning control

This section presents a modified feedback error learning
(MFEL) controller approach for nonlinear systems. The block
diagram of the proposed controller is illustrated in Fig.2.

<

Nonlinear
>
Uyee | Systems

Fig.2 Block diagram of proposed MFEL controller

The basic idea of the proposed MFEL control consists of three
steps. First, a neural NARX model trained modified differen-
tial evolution algorithm [13] is used for offline identifying a
dynamic inversion compensator to cancel out the effect of the
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nonlinearities feature. Then, a hybrid feedforward control
combined with the PID feedback control is realized. Where
the inverse evolutionary neural NARX (IEN) model provides
a feedforward control signal from the desired trajectory. The
PID controller is applied to improve the precision and reject
the steady state's error in tracking control. And final, an adap-
tive back-propagation (aBP) with a self-adaptive learning rate
based Sugeno Fuzzy system is developed and employed in the
MFEL to adapt well to disturbances and dynamic variations
in its operation. Based on Fig.2, the voltage control law is
given by
Unvrer = Upp +Ujen (2

Where umee is the control signal applied to the nonlinear sys-
tem. The feedforward control signal uen is provided by the
IEN model and the control signal upip is produced by the PID

controller based error €, = Yeer — Y between reference posi-

tion trajectory and position output. The PID controller output
can be expressed as follows,
de, (1)

Upip (1) =k,e, () +k [, (7)dz +k, m 3)

And then, the weight values of the inversion compensator
based IEN model are trained and adjusted online during real-
time control by the feedback error control signal
€, = Uy, —U,gy 1o minimize the learning error defined as,

2 1 2

:E Upp (4)

E, = E Uyrer —Uien

2.2.1. Proposed IEN model

In practice, it is very difficult to identify the inverse dynamics
of the system by using the mathematical method. In this part,
the neural NARX model optimized by a modified differential
evolution algorithm is used for identifying the inverse dy-
namic model based on the experimental input-output data.
The block diagram of the IEN model is illustrated in Fig.3.
The structure of the inverse neural NARX model and the de-
tails of the MDE training algorithm is described in [13].

t
u_(t)4>[ Nonlinear systems ]7&

Inverse
Evolutionary
Neural NARX
(IEN model)

Fig.3 Block diagram of IEN model
2.2.2. An adaptive back-propagation (aBP) law

To adjust online the weight values of the inversion compen-
sator based IEN model, an adaptive back-propagation (aBP)
with self-adaptive learning rate based Sugeno Fuzzy logic is
used to minimize E, in Eq.(5) as below

OE,
Aw = w(new)—w(old)=-2 aw (5)

Using the chain rule, we have

OE _ OF, Oupgy - )au,EN
PID
OW OUg, OW ow

The selection of the suitable learning rate A plays an important
role in the convergence by adaptively adjusted online the
weight-update. If the learning rate value is too small, it needs
much time to obtain an acceptable solution. On the contrary,
a large learning rate value will possibly lead to oscillation,
preventing the error E, to converge to zero.

(6)

For this reason, this part proposes a self-adaptive strategy for
selecting the learning rate A based on a Sugeno fuzzy logic.
The input of the fuzzy model is the error Ey, and the derivative
of error Ey, namely dE. The corresponding output is the learn-
ing rate L. The Sugeno fuzzy model is constructed using the
fuzzy rules shown in Table 1, where z1=0;z2=>5¢"

z3=5¢™* and z4 =5¢ . The membership functions for fuzzy
input variables are shown in Fig.4.

Table 1. Fuzzy rules table for scaling learning rate

LN SN Zero SP LP

LN z2 z3 74 74 74
SN z4 z3 z3 z3 z4
Zero z3 72 z1 z2 z3
SP 74 z3 z3 z3 74

LP z4 z4 z4 z3 z2
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Fig. 4 Membership functions of the fuzzy input variables

2.3. Results and discussion

In this section, we study the performance and effectiveness of
the proposed MFEL controller for a nonlinear system and its
application to control the position of a shape memory alloy
(SMA) actuator.

2.3.1. The benchmark nonlinear system

An original feedback error learning (FEL) controller approach
is often tested on a robot arm system to validate the perfor-
mance of FEL in [15], [18]-[20]. Therefore, in this test, the
authors use the MFEL controller to control a 1-DOF arm robot
model that is given as,
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Fig. 5 1-DOF arm robot model

(Mg +moI?) (1) +34(t) + (ml, +myl)gsing(t)=u(t) (@)

Where, m1 is a mass of arm. m2 is a payload. | is a length of
arm. Ic is a center of gravity position arm. J is a coefficient of
friction. g is a gravity acceleration. u(t) is the torque control
as input signal. ¢(t) is the end-effector position as an output
signal. All parameters are set up as,

¢ (t)+24(t)+10sing(t) =u(t) (8)

a. Compensator based IEN model

Firstly, the benchmark system is implemented in Simulink
with a sampling period of 0.1 seconds. Applying square waves
with different amplitudes, the training data set and validating
data set are collected and shown in Fig 6. Where, (a) use to
estimate the mod«(a!, (b) use to validate the Ili!\l model.
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Fig. 6 Data for estimating and validating the IEN model

ue
o
7
—
S [———
—
—!
—
—
B
—
uv
o

phi-e

Secondly, the IEN model is used for identifying the dynamic
of a nonlinear system in Eq.(7). The IEN structure is selected
by 3-layer feedforward neural networks with S1 hidden neu-
rons, S1 = 7; the number of generations GEN = 2000; number

of populations NP = 62 and the 2nd order NARX structure.
Output (solid) and one-step ahead prediction (dashed)
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Fig.7 The identification performance of IEN model
Finally, the estimation and validation process is conducted to
identify the IEN model. Fig.7 shows that the performance of
identification inverse dynamic for the nonlinear system. The
results demonstrate the better identification capability of the
IEN model. The final structure of the IEN model which

includes a 3-layer with 4 inputs, 7 hidden nodes, and 1 output.
The resulted weighting values of the IEN model precisely de-
scribe the nonlinear system which is used to generate the ini-
tial weight of the feedforward controller in the proposed
MFEL controller.

b. Control results

The block diagram of the MFEL control approach applied to
control of the nonlinear system in Eq.(7) is illustrated as Fig.8.
The PID parameters are turned with the trial and error method
and chosen to be K, =80.2 and K; =20.5.

PD Controller

input v

uINN
=

Compensator
based IEN model

:

Eq(6) phi

ref

Fig.8 Block diagram of MFEL scheme in Simulink

Case study 1. In this case, the closed-loop performance is ver-
ified in changing the reference signal to survey the control
performance of the controller. Fig.9 and Fig.10 compare the
control performance of the proposed controller and the PID
controller in two cases of sine and step without the payload,
respectively. All these results show that the PID controller
causes big error values. On the contrary, the proposed control-
ler always adaptively minimizes the error value to converge
to zero successfully.
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Fig.9 Quality control of Eq.(7) with step reference
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Fig.10 Quality control of Eq.(7) with sine reference
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Fig.11 shows the control signal (u), where the output of the
feedforward controller based on the IEN model (uien), the
component PID controller (upip), and the proposed MFEL
controller (umreL). dv/dt is the variation of the weights in the
hidden layer of the IEN model. dw/dt is the variation of the
weights in the output layer of the IEN model. After a finite
time, the feedforward control based on the IEN model learns
the inverse dynamics of the system and take the responsibility
of the control system. Simultaneously, the output of the com-
ponent PID controller tends to go to zero. Fig.11 also shows
that the weights varied automatically during control operation
in two cases of sine and step trajectory without payload, re-
spectively.

step reference {

{ sine reference

dw/dt

10 20 30 40 50
time (sec)

time (sec)

Fig.11 Online learning in control of Eq.(7)

Case study 2. Changing the payload of the nonlinear 1-DOF
robot arm system in Eq.(7). Fig.12 shows the comparison re-
sults between the traditional PID controller and the proposed
MFEL controller in two cases of sine and step trajectory with
the payload, respectively.

step reference { ref =====- PID eemeeeee MFEL {sine reference
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Fig.12 Quality control of Eq.(7) with payload

step reference{ ------ PID IEN wweereeeees MFEL { sine reference
5 S
5 /
30 0 10 20 30 40
0.01
B 51 =
30 = K“ 0 Ny o —
-5 -0.01
o , 10 20 30 0o ,10 20 30 40
x 10 x 10
1g 2
ol & - Og —— s S
2 ‘\;/ = L/ = =L~
-1 -2
0 10 20 30 0 10 20 30 40
time (sec) time (sec)

Fig.13 Online learning in control of Eq.(7) with payload

The figure shows that the performance of the MFEL control-
ler is better than the PID controller. Fig.13 shows the overall
control signal (umeeL), the output of the feedforward controller
based on the IEN model (uien) and the component PID con-
troller (upip). Fig.13 also shows that the weights varied auto-
matically during control operation in two cases of sine and
step trajectory with payload, respectively.

Case study 3. Impacting the noise with var =0.0001 ,
mean=0 and Ts=0.5sec to the nonlinear system.
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Fig.14 Quality control of Eq.(7) with noise
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Fig.15 Online learning in control of Eq.(7) with noise

Fig.14 shows the comparison results between the traditional
PID controller and the proposed MFEL controller in case of
step trajectory. The figure shows that the performance of the
MFEL controller is better than the PID controller. Fig.15
shows the overall control signal (uwrer), the output of the
feedforward controller based on the IEN model (uien) and the
component PID controller (upip). Fig.15 also shows that the
weights varied automatically during control.

In summary, the proposed modified feedback error learning
(MFEL) control used the online auto-tuning capability of the
aBP learning algorithm to accurately control the nonlinear
SISO system. Based on the above results, we see that the pro-
posed controller had an achieving stable high-performance
control and the error between the reference signal and the out-
put signal being optimized. The proposed controller had also
strong adaptive ability and robustness in the presence of ex-
ternal disturbances and payload.
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2.3.2. Applied in tracking control of SMA actuator

a. Configuration of SMA actuator system

An experimental SMA actuator architecture is shown as
Fig.16. The experimental setup includes SMA spring, bias
spring, power amplifier, rotary encoder, NI-PCI 6221 card,
and a computer. The parameters of the SMA spring actuator
are described in Table 2.

NI-PCl |PAC] power
@_' 6221 amplifier
A

Matlab

SMA Sprlng

L

Rotary
encoder

Fig.16 Diagram of the experimental SMA actuator

Table.2 Experimental device parameters

No | Devices Parameters
SMA | Ni_—Ti material, expansion spring
1 spring |” Wire dla_met_er: 0.51 mm
actuator |” Mean coil diameter: 6.0 mm
- Generate force: 1.0 N
5 Rotary |- Resolution(pulses/rotation): 500
encoder |- Power supply: 5V + 10%
- National Instrument Company.
3 NI-PCI |- Two 16-bit analog outputs (833
6221 KS/s); 24 digital 1/0; 32-bit counters
- 16 Analog Inputs, 16-Bit, 250 KS/s.

When cool, the SMA actuator can be extended to 9cm. When
heated, it contracts to 25mm overall. A power amplifier,
which is controlled by digital to analog converter (or DAC)
module of NI-PCI 6221 card, is applied SMA spring to heat.
A bias spring is connected to the SMA spring to apply a re-
storing force. A rotary encoder is mounted to the spring to
measure the displacement of SMA spring. This feedback sig-
nal is fed into the computer through an encoder module of NI-
PCI 6221 card. The Real-Time Windows Target Toolbox of
Matlab is used for the real-time control system.

b. Compensator based the IEN model

In this section, we find the IEN model to describe the hyste-
resis compensator of the SMA actuator. The procedure con-
sists of four basic steps as follows,

55 ‘F .......... wref
[5] oo
g e,
8
©
>
ok
0 50 100 150 200 250 300
é 4 /’\ [ d-ref
€
[}
:, N A
]
S0
0 50 100 150 200 250 300

time[sec]
Fig.17 Data for estimation and validation purpose

Firstly, the SMA actuator system to generate a collection of
experimental data relating the applied voltage input to the po-
sition output of the SMA actuator. Fig.17 shows applied volt-
age input (v-ref input) to the SMA actuator system and the
responding position output collected. Voltage input and posi-
tion output from (0-150)[sec] are used for estimating the IEN

model. Voltage input and position output from (150-300)[sec]
are used for validating the IEN model.

Secondly, the IEN model is created by combining the 3-layer
with 5 neurons of the hidden layer and the 2% order NARX
model. Where the parameters of the MDE algorithm is se-
lected as population size NP =50, number of generations GEN
= 2000.

Finally, the estimation and validation process is conducted to
identify the IEN model. Fig.18 shows the performance based
on the average values of MSE on the validating process. The
result shows that the inverse model of the SMA actuator
achieves good performance identification. These results will
be used to provide for the compensator control.

Output (solid) and one-step ahead prediction (dashed)

voltage[V]
N IS

error

time (samples)
Fig.18 Performance on validating the IEN model

c. Experimental control results

The control programming is designed using the real-time win-
dow target of MATLAB. The PID parameters are chosen by
trial and error method and determined to be

K,=7,K =0K, =7.

Case study 1. Changing the reference signal to survey the po-
sition control performance of the SMA actuator. Fig.19 shows
the performance of the proposed controller with sine reference
and compares it to the PID controller. Fig.20 shows all control
signals of the proposed controller. Based on the control re-
sults, we see that the proposed controller improves the quality
significantly compared to the PID controller. And especially,
the error learning in online updating to decrease to zero.
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Fig.19 Quality control of SMA with sine reference
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Fig.20 Online learning in control with sine reference
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Fig.21 Quality control of SMA with triangle reference
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Fig.22 Online learning in control with triangle reference

Similarly, Fig.21 describes the quality of controlling the SMA
actuator with a triangle trajectory. Figure 22 describes the out-
put of the MFEL controller and the weight variations of the
controller during the control. Based on the control results, we
see that the MFEL control quality achieved good results de-
spite changing the reference signal and achieving much better
quality when compared to the PID controller. Adaptation of
the MFEL controller is shown in the reduced control error
while the PID controller does not improve the error in the con-
trol and the weights of the forward controller be updated
online during control to improve control quality.

time [sec]

Case study 2: Changing the load by increasing the stiffness
of spring bias to test the performance of the proposed control-
ler. Figure 23 describes the quality control with the sine ref-
erence signal when changing the load at time t = 90 sec. Figure
24 describes the weighting variation of the MFEL controller
during the control process.
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Fig.23 Quality control of SMA when changing load
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Fig.24 Online learning in control when changing load

The results show that the performance of the MFEL controller
quite well. When changing the load at t = 90 sec, the weight
values of INN is online updated to guarantee the quality con-
trol.

Case study 3: Generate the noise by impact to change the
elasticity of bias spring or decrease the temperature of SMA
by the fan and then do survey the quality control of the MFEL
controller. Figure 25 shows the quality control with the sine

reference signal when changing the noise.
4

HAVAVIVAVAVAY

§ ': Nois 7 Noise Noise

: 0-;0‘. L/so 100 150 200

% °TW I Wi Jk i V Wi

I
0 L

time[sec]

Fig.25 Quality control of SMA when changing noise

In summary, the proposed MFEL controller-based evolution-
ary neural network used the online auto-tuning capability of
the aBP learning algorithm to accurately control of SMA ac-
tuator. Moreover, the proposed controller had also strong
adaptive ability and robustness in the presence of external dis-
turbances.
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3. Conclusion

In this study, a modified feedback error learning (MFEL) con-
trol is developed and successfully applied to control the non-
linear SISO system. The MFEL controller is modified from
the original FEL version by adding an evolutionary neural net-
work and an adaptive back-propagation (aBP) with a self-
adaptive learning rate using the Sugeno Fuzzy model. The
simulation on the benchmark nonlinear system is firstly tested
to evaluate the performance of the MFEL controller. Then, the
proposed controller is applied to position control of the SMA
actuator. Experimental results prove that the proposed MFEL
controller can learn and update the inverse hysteresis of the
SMA actuator to reduce the tracking error to nearly zero. Fu-
ture works will study to implement the proposed MFEL con-
troller for other hysteresis nonlinear systems.
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