
Received: 21 November 2022; Accepted: 22 December 2022

 

Vol 3 (3) (2022) 
 

Measurement, Control, and Automation 

Website: https:// mca-journal.org 
 

ISSN 1859-0551  

 

An accurate machine learning approach for seed germination prediction 
 

Nguyễn Đình Văn1*, Đào Trung Kiên1, Nguyễn Việt Tùng1, Phạm Thị Ngọc Yến2 
 

1MICA Institute & Departement of Communication Engineering, SEEE, HUST 
2MICA Institute & Departement of Automation, SEEE, HUST 
*Corresponding author E-mail: van.nguyendinh@hust.edu.vn

 
Abstract 
 
To determine the quality of seeds, researchers often must manually check for seeds germination. The process is cumbersome, time consum-
ing and error-prone since it requires the researcher to manually examine at least a few hundred to thousands of seeds. Hence, an automatic 
seeds germination prediction solution is required. Over the years, with the help of deep learning methods, some studies have accurately 
predicted the performance of seeds given just a picture of them. However, one downside of the deep learning approaches is the result does 
not give more insight into which factors of the seeds’ image contribute to a successful germination process. In this paper, we propose a 
classical machine learning method with a carefully designed features engineering process to both accurately predict seeds germination and 
give more insight into the relevant factors for a seed’s germination process. At 95% prediction precision, the proposed method suggests that 
relevant factors are: seed’s size, the circularity, brightness distribution and its skewness and kurtosis. 
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Tóm tắt 
 
Để xác định chất lượng của hạt giống, các nhà nghiên cứu thường 
phải kiểm tra khả năng nảy mầm của hạt một cách thủ công. Quá 
trình này rất rườm rà, tốn thời gian do dễ xảy ra lỗi vì cần thực hiện 
kiểm tra ít nhất từ vài trăm đến hàng nghìn hạt giống bằng mắt 
thường. Do đó, một giải pháp dự đoán hạt nảy mầm tự động là cần 
thiết. Trong những năm qua, với sự trợ giúp của các phương pháp 
học sâu, một số nghiên cứu đã dự đoán chính xác hiệu suất của hạt 
giống chỉ với một hình ảnh về chúng. Tuy nhiên, một mặt trái của 
các phương pháp học sâu là kết quả không cung cấp thêm thông tin 
chi tiết về yếu tố nào trong hình ảnh của hạt giống góp phần vào 
quá trình nảy mầm thành công. Trong bài báo này, chúng tôi đề 
xuất một phương pháp học máy cổ điển với quy trình kỹ thuật tính 
năng được thiết kế cẩn thận để dự đoán chính xác sự nảy mầm của 
hạt và cung cấp cái nhìn sâu sắc hơn về các yếu tố liên quan cho 
quá trình nảy mầm của hạt. Với độ chính xác dự báo khả năng nảy 
mầm khoảng 95%, phương pháp đề xuất gợi ý rằng các yếu tố liên 
quan đến khả năng nảy mầm của hạt bao gồm: kích thước, độ tròn, 
phân bố độ sáng, độ lệch và độ nhọn của hạt giống.  

1. Introduction 

Germination is a crucial attribute of seed quality assessment. 
It directly impacts the produce yield and quality of the plant. 
Often, companies must assess seeds germination to meet 
certain germination standards before distributing to the cus-
tomers. The process of assessing germination has two parts:  

- Seed germinability (the ability to germinate) 
- Seed usability (after germination, the seed is usa-

ble) 
However, germination of a specific seed type varies due to 
the condition it was produced, harvested, stored, and germi-
nated. There are multiple factors during these phrases that 
could lead to seed unable to germinate [1]. Therefore, com-
panies must continuously assess seed germination for multi-
ple seed lots to ensure quality of the product. Thus, it is criti-
cal to develop an automatic seed germination solution. In 
this paper, we focus on seed germinability prediction process 
and the relevant factors that contribute to seed germinability 
using RGB images. 
With advancements made in computer visions, numerous 
attempts have been made to assess seed (and grain) quality 
by developing non-destructive, automated predicting models 
that are capable of judging each specific seed rather than just 
a statistical result [2]-[8]. At the cores of these studies, clas-
sical machine learning or deep learning approaches enable 
high accuracy prediction of seed germination. While deep 
learning approach gained a lot more attention recently due to 
its precision, the downside of it is clear. A deep learning 
model can predict up to 98% accuracy seed germinability 
given enough samples but does not provide insight on which 
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factors are relevant to the germinability of a seed. This is 
because the way deep learning utilizes neural network algo-
rithms to automatically extract features out of the RGB im-
age of a seed [9]. In contrast, classical machine learning ap-
proach needs a feature engineering process where features 
are extracted from RGB images of seed. The process is diffi-
cult since there is no guarantee of a successful machine 
learning model given a set of features amongst an infinite 
combination of possible features [10]. Still, having a defined 
set of relevant features would offer much more insight into 
the germination process of a particular seed.  
Given the physical appearance and chemical characteristics 
of a seed can be extracted from RGB images [11]-[14], it is 
feasible to extract a set of relevant features from RGB imag-
es of seeds to predict the germinability. In this study, we 
propose a set of features extracted from different types of 
seeds and a machine learning model to accurately predict 
seeds germination.  
The paper has 5 sections organized as follows: an introduc-
tion about the problem in section 1; the state of the art of the 
matter is presented in section 2. Section 3 provides details 
about methodology to carry out the study. Section 4 presents 
results and evaluation of models proposed in the study. A 
conclusion can be seen in section 5.  

2. State of the art 

2.1. Conventional methods 

The conventional method for testing seed quality often in-
cludes seed vigor tests. These tests can potentially show all 
properties for a seed which determines seed lots germinabil-
ity in a wide range of environments. Most of these tests are 
developed by the International Seed Testing Association 
(ITSA) [15]. However, these tests need to be evaluated man-
ually using different complex standardized procedures for 
different seeds. Thus, they are not commonly used since it 
requires wide range of tests, with time intensive protocols 
[16]. 

2.2. Computer vision approaches 

To automate the process of testing seeds germinability as 
well as reducing human errors, image processing and analy-
sis techniques are commonly used. Approaches in [2]-[8] 
shows multiple attempts to use classical image analysis to 
determine the correlation between features extracted from 
RGB image of seeds with its germination.  
Germinator, for instance, is a software that measure differ-
ences in time of seed images to look for indication of germi-
nation [2].  
Seed Vigor Imaging System (SVIS) [3] processes RGB pixel 
values of scanned images to calculate the length of seeds. 
The system making use of flatbed scanner to reduce the il-
lumination or partial occlusion issues met in camera captur-
ing methods.  
In some cases, X-ray images or high-resolution spectral de-
tectors are also used to capture different views of seeds. 
These techniques, however, require costly equipment as well 
as laboratory conditions to execute [17]-[19]. 
Still, some of existing industrial solutions which offer most 
accurate characteristics of seeds often work in destructive 

methods. This means seeds will be destroyed or partially 
damaged during evaluation and testing phases [20],[21]. 
Hence, industrial companies still very much rely on conven-
tional methods when it comes to germination evaluation.  

3. Methodology 

In our study, we focus on a non-destructive computer vision 
approach that can be easily adopted by a standardized setting 
of a farm factory. Not only trying to accurately predict seed 
germinability, but we also attempt to find relevant features 
which are important to the germination process. Seed usabil-
ity was not in the scope of the study and subject to further 
research.  
The method to carry out the study follows closely a standard 
classification procedure for machine learning in computer 
vision. There are three major steps: 

- Data collection 
- Data pre-processing and analysis 
- Training and evaluation of machine learning algo-

rithms 

3.1. Data collection 

Data collection is the most time-consuming, labouring and 
accuracy intensive task in a machine learning problem. 
There are 2 aspects of data collection phase: 

- The collected dataset’s size 
- The quality of the dataset: labelling accuracy, noise 

ratio, etc. 
Often, it requires thousands of datapoints for a simple ma-
chine learning problem and a degree of tens of thousands is 
recommended for a deep learning problem. However, all 
these datapoints must be accurately labelled with minimal 
random noises (outsides factors that can contribute to the 
incorrect datapoint). And often, the labelling process is done 
manually (supervised learning) to prevent any error. 
In our study, we focus on two seed types which are popular 
in the northern of Vietnam which are: a variation of spinach 
(cải bó xôi) and water spinach (rau muống). The two seed 
types are shown in Fig.1. Spinach is a long harvesting cycle 
seed of about 40-45 days for a cycle while water spinach is a 
medium cycle length with 20-25 days.  
 

 
(a) 

 
(b) 

Figure 1: Two seed types chosen for the study: (a): spinach variation (cải 
bó xôi), (b) water spinach (rau muống). 

The process of collecting data for the study is illustrated in 
Fig.2. There are three phrases of data collection process: 
image capturing; seed batch processing and analysis; germi-
nation outcome checkup & matching. 
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In image capturing stage, a batch of seeds (often 50 – 60 
seeds per batch) is laid on a special color paper with an id 
number and batch id. Batch sample images can be seen in 
Fig.3. and Fig. 4. In Fig.3, a spinach batch image is shown 
with 50 seeds and a blue background. The blue background 
is designed to be easily removed and facilitate seed segmen-
tation in the image processing stage. Fig.4 shows a batch of 
water spinach of 60 seeds and removed background.  
  

 
Figure 2: Illustration of data collection process. There are 3 stages: image 
capturing; seed batch processing and analysis; germination outcome check-
up & matching.  

 

 
Figure 3: An image of a spinach batch (cải bó xôi) with 50 seeds and blue 
background. 

 

 
Figure 4: An image of a water spinach batch (rau muống) with 60 seeds 
and removed background (after background removal). 

It is then captured using a high-resolution camera with speci-
fication shown in Table 1. The setup is fixed for the entire 
experiment to ensure all seeds are captured in the same con-
ditions (lighting, background, position, distance to the cam-
era and distortion).  
An image of the setup can be seen in Fig. 5 (note that light 
coming from windows is allowed only to capture the setup. 
The setup using flashlight to maintain constant lighting envi-
ronment.) Flashes were not shown in the setup image as it is 
placed far away to avoid hard lighting and reflection. 

Table 1: Specification of equipment and setup for seed batch image cap-
ture. 

ID Name Specification 

1 Nikon DSLR D610  

CMOS sensor 35.9mm 
24.3 Megapixels 

TTL exposure metering using 
2,016-pixel RGB sensor 

2 Lens Nikkor 85mm 1.8 

Focal lens: 85mm 
Maximum aperture: f/1.8 
Minimum aperture: f/16 
Focus distance: 80cm 

3 Nikon Speedlight SB-700 

Effective flash output distance 
range: 0.6m – 20m 

Guide number: 28/92 (ISO 100, 
m/ft.), 39/128 (ISO 200, m/ft.) 

4 Use flash Yes 
5 Focal length 85mm 
6 Aperture f/11 
7  Speed 1/160 
8  Distance batch seed to camera 90cm 

 
 

 
Figure 5: Setup for batch image capturing with camera, tripod and a batch 
of seed placed on a special paper to absorb hard lighting and facilitate back-
ground removal, seed segmentation later. 

In total, 100 batches of 50 seeds for spinach were captured 
and 100 batches of 60 seeds for water spinach were captured. 
It resulted in 5000 seeds for spinach and 6000 seeds for wa-
ter spinach. 
In the second stage seed batch processing and analysis, seed 
images will be processed, saved and at the same time, seeds 
go through the germination process using recommended 
setup. Each seed will be carefully placed in a numbered tray 
so it can be identified later. The tray of seeds can be seen in 
Fig. 6. 
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Figure 6: Tray for batch of seeds number 9.  The starting seed id is marked 
with missing piece in bottom right of the image.  

The image processing process will be discussed in detail in 
section 3.2 Data pre-processing and analysis.  
In the last stage: germination outcome checkup & matching, 
after going through the germination process, seeds will be 
marked with either successful germinated (1) and unsuccess-
ful germinated (0) as the final label for the seed. Since seed 
ID and seed batch number were carefully kept during the 
process, it is possible to match the germination outcome and 
the image of each seed.  
The outputs of the data collection process are one dataset of 
6000 seeds for water spinach with germination outcome la-
bels and another dataset of 5000 seeds for spinach also with 
germination outcome labelling.   

3.2. Data pre-processing and analysis 

The process of data pre-processing and analysis consists of 
two parts: (1) data cleansing including noise reduction, 
background removal, seeds segmentation and seeds bounda-
ry identification; (2) features selection and extraction.  
Images of batch of seeds are fed into a data cleansing mod-
ule which performs noise reduction, background removal, 
seeds segmentation and seeds boundary identification. First, 
noise of images will be reduced using fastNlMeans-
Denoising algorithm [22]. Then a background removal is 
done by selecting the pre-defined background colour. An 
image of transparent background batch of seeds facilitates 
the seeds segmentation and boundary identification. The 
sample of seeds boundary can be seen in Fig. 7. 
 

 
Figure 7: Seeds boundary and center point. 

Given the seeds boundary and center point identified, the 
identification of seeds can be done by sorting seeds using x 
and then y coordinate. Together with the batch id, every seed 
is identified and matched with its germination outcome later.  

In features selection and extraction task, after reviewing 
multiple state of the art studies in [2]-[10], selected features 
are extracted automatically from images of seeds. The se-
lected features are explained in Table 2. 

Table 2: Selected features of seed image 

ID Name Specification 

1 Seed area  
Calculated in pixels, demonstrate 
a relative size of seed compare to 

others of the same type 

2 Mean gray value 

Calculated based on grayscale 
image, demonstrate the distribu-

tion of brightness in the seed 
image. 

3 Perimeter Show the perimeter of seed 

4 Circularity 
Calculate the circularity of a seed 
with value from 0: non-uniform 

to 1: perfect circularity 

5 Skew 
The skewness of the shape of the 
seed, the third order moment of 

the mean 

6 Kurt 
Kurtosis of the seed shape, the 

fourth order moment of the 
mean. 

7  Aspect Ratio 
The ratio of major axis / minor 
axis in case the seed fits an el-

lipse 

8  Solidity 
The ratio of area over convex 

area 

However, in this phase, several seeds cannot be analyzed 
automatically (e.g., incorrect seed boundary result in abnor-
mally large area, perimeter, unable to compute skewness and 
kurtosis). Invalid seed images will be removed as an attempt 
to recover these images will take more resources than de-
sired. In total, 4400 seed images for spinach and 5250 seed 
images for water spinach are accepted. The data is now 
ready for machine learning models with 8 features and the 
label is either 0 (failed germination) or 1(success germina-
tion). 

3.3. Training and evaluation of machine learning algo-
rithms 

To train and validate a machine learning algorithm, dataset is 
often divided into two subsets: 75% datapoints go to training 
set and 25% datapoints go to validation set. Machine learn-
ing algorithm is then selected, trained, and fine-tuned on 
training set. The output of a trained machine learning algo-
rithm is called a model. The model is then validated using 
the validation set as well as technique such as k-fold cross 
validation.  
In this study, the purpose of the machine learning model is to 
predict whether a seed will be germinated successfully or not 
given its image at the beginning of the germination phase. 
This is a classification problem of two classes: 1 – success 
germination and 0 – fail germination. Multiple classification 
machine learning algorithms are investigated to find the op-
timal one including Artificial Neural Network (ANN), Sup-
port Vector Machine (SVM), Random Forest (RF). These 
algorithms are known for success in complex classification 
problems. To determine the nearest optimal configuration for 
each algorithm, a grid-search [23] is employed on key hyper-
parameters. 
For ANN, the selected hyper-parameters are shown in Table 
3.  
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Table 3: ANN optimal hyper-parameters 

ID Name Specification 
1 Input layer  8 neurons 
2 Output layer 1 neuron (0 or 1) 
3 Hidden layer 20 neurons 
4 Activation function Relu 
5 Learning rate 0.001 
6 Solver Adam 

For SVM, the selected hyper-parameters are shown in Table 
4. 

Table 4: SVM optimal hyper-parameters 

ID Name Specification 
1 Core function  “rbf” 
2 Gamma 0.01 
3 Coeficient 0.6 
4 C constant 1 

And lastly, for RF, the selected hyper-parameters are shown 
in Table 5. 

Table 5: RF optimal hyper-parameters 

ID Name Specification 
1 Number of Decision Tree  100 
2 Split function “Gini” 
3 Max-depth Unlimited 
4 Feature separator “sqrt” 

4. Results and Evaluation 

Both datasets are divided into 75-25 for training and valida-
tion and then applied K-fold cross validation technique for 
generalization report on models’ performance. K is chosen to 
be 10 as it is sufficient for a generalization report. 

 
Figure 8: ANN model performance report with 10-fold cross validation on water spinach dataset. 

 
Figure 9: SVM model performance report with 10-fold cross validation on water spinach dataset. 

 
Figure 10: RF model performance report with 10-fold cross validation on water spinach dataset. 

 
For ANN, the model shows a 94.8% classification accuracy 
on water spinach dataset after running 10-fold cross valida-
tion. There is no indication of overfitting as both training 

and cross-validation scores are closely followed by each 
other in learning curves. The scalability of the model seems 
to be linear which means more datapoints will only increase 
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training time in linear order. The performance of the model 
graph, however, suggests that more data is not likely to in-
crease the model accuracy.  
For SVM, the model performed exceptionally well on train-
ing data with 99% accuracy on water spinach dataset. How-
ever, there is a clear gap between cross validation score and 
training score which indicates a likelihood of overfitting. 
That is the model is likely to perform badly with new unen-
countered data. The model also likely has an exponential 

order growth of fit time with more training data and does not 
seem to improve accuracy significantly if more data is avail-
able.  
For RF model on water spinach dataset, the model has a 
close to perfect 100% accuracy on training set. However, the 
indication for overfitting is clear with a gap between training 
score and validation score. The model fit time is likely to be 
linear if more data is introduced and it also shows that more 
data can enhance the model’s performance. 

 
Figure 11: ANN model performance on the spinach dataset.

 

 
Figure 12: SVC model performance on the spinach dataset. 

 

 
Figure 13: RF model performance on the spinach dataset.

 
For the spinach dataset, the ANN and SVC model both dis-
play similar characteristics to its respective performance on 
the water dataset (Fig. 11, Fig. 12). The accuracy for ANN is 
even dropped as low as 90% in the spinach dataset.   
When applying the same RF model for the spinach dataset 
(with 4400 datapoints), the result is promising with 95.6% 
classification accuracy with 10-fold cross validation (Fig. 

13). However, it is shown that the model is not likely to im-
prove after just 2000 training examples. 
The comparison between models’ performance for water 
spinach dataset is shown in Table 6.  
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Table 6: The comparison of models’ performance for water spinach dataset 

ID Model Training score Validation score 
1 ANN 0.94 0.94 
2 SVC 0.99 0.71 
3 RF 1 0.95 

The comparison between models’ performance for spinach 
dataset is shown in Table 7. 

Table 7: The comparison of models’ performance for spinach dataset 

ID Model Training score Validation score 
1 ANN 0.89 0.90 
2 SVC 0.99 0.73 
3 RF 1 0.95 

Compared to the state-of-the-art results from deep learning 
approaches with more than 98% accuracy as in [23], the 
method is not out-performed the best predictor out there. 
However, in terms of learning more insight about the rele-
vant factors which contribute to the seed germinability, this 
study clearly shows relevant factors that can be used in mul-
tiple aspects of seeds production industry.  

5. Conclusion  

In this article, an accurate machine learning approach to pre-
dict seed germination is introduced. The study proposes to 
use 8 features extracted from a non-destructive RGB image 
of seeds to determine whether the seed is capable of germi-
nating in the future. 
Three classification machine learning algorithms are chosen 
to perform and compare to each other and a validation score 
of 0.95 is reached with Random Forest model for both da-
tasets with 8 carefully selected and extracted features from 
seeds’ RGB images.  
Although the result is promising, it is outperformed by the 
state-of-the-art deep learning approach by 0.03 point. How-
ever, the study provides much more insight into relevant 
factors which contribute to the germination process. 
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