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Abstract 

 
This paper presents a new method to estimate online four parameters of the interior permanent magnet synchronous motors (IPMSM), 

including stator resistance, d- axis inductance, q-axis inductance and permanent magnet flux linkage. The proposed method is based on the 

neural network with the training data taken from experiments, which were preprocessed before feeding to the input of the neural network 

model. The proposed online parameters estimation method is evaluated by comparing the estimation accuracy and the updating time with 

other conventional online methods, such as Extended Kalman Filter, Recursive Least Square and the Adaline Neural Network. Extensive 

numerical simulations have been conducted to verify the effectiveness and the accuracy of the proposed method. 
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Symbols 

Symbols Units Description 

Ψm Wb Rotor flux linkage 

R  Stator resistance  

Ld, Lq H d and q stator inductance  

id, iq A d and q stator current  

vd, vq V d and q stator voltage  

 Rad/s Electrical angular speed of 

the rotor 

Abbreviations 

IPMSM Interior Permanent Magnet Synchronous 

Machines 

RLS Recursive Least Square 

EKF Extended Kalman Filter 

ANN Adaline Neural Network 

FOC Field Oriented Control 

DTC Direct Torque Control 

MPC Model Predictive Control 

 

1. Introduction 

Due to high power density and efficiency, Interior 
Permanent Magnet Synchronous Motors (IPMSMs) find 
various applications such as in wind generator, CNC 
machine and electric/ hybrid electric vehicles (EV/HEV) 
[1]. Identifying machine parameters is significant in control 
strategies, for example, in field-oriented control (FOC), 
direct torque control (DTC) and model predictive control 
(MPC). Determining parameters is required to ensure a 
stable system while improving its efficiency and dynamic 
response. Especially, in vector-control methods, the 
parameters of a PI controller, which affects the control 
performance of the IPMSM drive system, are determined 
using the IPMSM parameters [2]. As a result, the more 
accurate IPMSM parameters identified, the better control 
over the drive system can be achieved. In addition to that, 
as the IPMSM is associated with potential issues such as 
demagnetization due to temperature rise or inter-turn short 
circuit (ITSC) in stator windings, condition monitoring is 
necessary to ensure the safe and correct operation of the 
IPMSM, which can be done by tracking the IPMSM 
parameters. For example, in [3], a technique was proposed 
to estimate the stator resistance and flux linkage to online 
monitor the working conditions of rotor permanent magnet 
(PM) and stator winding. In general, there are two types of 
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parameter identification, which are online and offline 
techniques to be reviewed as follows. 
Regarding offline techniques, the input/output data need to 
be collected first, then from which the IPMSM parameters 
can be estimated when the IPMSM is not connected with a 
load or at standstill state. The finite element analysis (FEA) 
is the offline technique, which requires the details of 
IPMSM design, structural and geometric information to 
calculate its parameters [4]. FEA can capture the effects of 
mutual inductances and the change in magnetic flux due to 
magnetic saturation [5]. However, if the required 
information is not acquirable, FEA cannot be implemented. 
Another offline technique is Standard Standstill Frequency 
Response test (SSFR test), in which the test signals driven 
by Voltage Source Inverter (VSI) are injected into the 
IPMSM. SSFR test can give high accurate identified 
parameters but measuring instruments are required [6]. The 
downside of SSFR test also stems from the fact that its 
identified parameters are distorted by VSI nonlinearities. At 
standstill state, the step DC voltage excitation tests can be 
used to identify apparent inductance without accurately 
capture the magnetic saturation effect [7]. Meanwhile, in 
dq-axis square voltage excitation tests [8], more parameters 
can be estimated such as stator resistance, rotor flux linkage 
and initial rotor position, but magnetic saturation effect is 
not considered, still. The technique in [9] can account for 
the effects of self-and-cross magnetic saturation, which can 
identify flux linkages from the measured dq-axis currents at 
constant rotor speed. Afterwards, by taking the partial 
derivatives of dq-axis flux linkages over currents, the 
incremental inductances can be found.  In general, offline 
techniques cannot identify the flux linkage and resistance, 
which vary with time during the real-time operation of 
IPMSM; therefore, they cannot be used for online IPMSM 
parameter tracking. 
Meanwhile, an online technique refers to estimating 
parameters during the operation of the IPMSM, which are 
updated in real-time given new input/output data. During 
the operation of the IPMSM, the temperature will increase, 
resulting in the increase in stator resistance and the decrease 
in flux linkage, accordingly. Therefore, by knowing these 
real-time dependent parameters, the thermal states of the 
IPMSM can be monitored [10], [11], which, in turn, serves 
diagnosis purposes related to the damage of winding 
insulation and demagnetization. Online parameter 
identification includes observer-based techniques, such as 
in [12] in which a method for bearing fault diagnosis is 
proposed with the peak energy spectrum introduced into the 
flux linkage observer. Further, in [13], an interturn short 
circuit fault detection is proposed based on residual current 
vector (RCV), which is generated by the difference between 
the measured stator currents and the estimated stator 
currents from a state observer. On the other hand, many 
sensorless identification techniques have been proposed to 
overcome the limitation of mechanical sensors and their 
costs involved in the implementation of the drive system. 
Due to the advance in high-performance computing 
technology, AI-based techniques have been employed to 
monitor the thermal states of winding and PM as in [14], 
which uses neural network (NN) for identification. In 
addition to NN algorithms, extended Kalman Filter (EKF), 
model reference adaptive system (MRAS) and recursive 
least square (RLS) are usually used to design parameter 
estimators. In [15], a technique based on EKF is proposed 

to estimate winding resistance and rotor flux linkage, and 
the results show that it is not stable and subject to noise. 
RLS techniques utilizes the injection of square wave current 
signal [16] or sinusoidal current signals [17] to solve the 
rank deficiency problems when estimating four parameters 
with only two available equations. The disadvantages of 
these methods are that the injected current signals produce 
the current and torque ripples and that estimation accuracy 
is low due to the non-linearity of the power converters. The 
other weakness of these methods is the slow update 
capability during the nature of recursive algorithm. Results 
in [18] show that MRAS, which identifies stator resistance 
and rotor flux linkage, is sensitive to disturbances. Further, 
it is also time-consuming to fine-tune the parameters of its 
adaptive mechanism. 
This paper proposes a solution to estimate four IPMSM 
parameters, including dq-axis inductances, rotor flux and 
stator winding resistance, based on Artificial Neural 
Network method. The main novelty of the proposed method 
is that four neural network models were trained to estimate 
four different parameters and that the subsequent estimation 
of q-axis inductance, stator resistance and d-axis 
inductance, rotor flux linkages result in the improvement of 
the estimation accuracy and fast updating capability. 
Furthermore, the input of every neural network model was 
proposed to be the function of the measured variables, 
which significantly affect the variation of the specific 
estimated parameter. As a result, the training time and the 
computation burden of the estimator can be reduced. In 
addition, an IPMSM drive system implemented in 
MATLAB/Simulink is used to compare and evaluate the 
proposed solution together with EFK, RLS and Adaline 
NN. The rest of this paper is arranged as follow. The next 
section outlines mathematical expressions related to the 
IPMSM model, three mentioned estimation techniques as 
well as the proposed solution. The third section presents the 
simulation setup and results with discussion to highlight the 
superiority of the proposed solution over the other 
techniques. Finally, the conclusion is presented in the fourth 
section. 

2. Online parameters identification methods 

2.1. IPMSM model 

Assuming that the cross-coupling effect is negligible, the 

dq-axis equations of the PMSM are given by: 
𝑑𝑖𝑑
𝑑𝑡

= −
𝑅

𝐿𝑑

𝑖𝑑 +
𝐿𝑞

𝐿𝑑

𝜔𝑖𝑞 +
𝑢𝑑

𝐿𝑑

                                          (1𝑎) 

𝑑𝑖𝑞

𝑑𝑡
=  −

𝑅

𝐿𝑞

𝑖𝑞 −
𝐿𝑑

𝐿𝑞

𝜔𝑖𝑑 +
𝑢𝑑

𝐿𝑞

−
𝜓𝑚

𝐿𝑞

𝜔                          (1𝑏) 

where 𝑖𝑑, 𝑖𝑞 , 𝑢𝑑 and 𝑢𝑞 are the dq-axis stator currents and 

voltages, respectively. 𝜔  denotes the electrical angular 

speed. R, 𝐿𝑞 , 𝐿𝑑  and ѱ𝑚  are the stator resistance, q-axis 

inductance, d-axis inductance, and rotor flux linkage, 

respectively. In this paper, before estimation, low-pass 

filters (LPFs) will be applied to measured data, which 

include 𝑖𝑑, 𝑖𝑞 , 𝑢𝑑, 𝑢𝑞 and 𝜔. After filtering, the steady-state 

IPMSM model will be discretized as: 

 

𝑢𝑑(𝑘) = 𝑅(𝑘)𝑖𝑑(𝑘) − 𝐿𝑞(𝑘)𝜔(𝑘)𝑖𝑞(𝑘)                        (2𝑎) 
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𝑢𝑞(𝑘) = 𝑅(𝑘)𝑖𝑞(𝑘) + 𝐿𝑑(𝑘)𝜔(𝑘)𝑖𝑑(𝑘)

+ 𝜓𝑚(𝑘)𝜔(𝑘)                                      (2𝑏) 

2.2. Recursive Least Square method 

The mathematical model of a RLS algorithm is: 

 

                            𝑦𝑘 = Φ𝑘
𝑇𝑥                                                    (3) 

 
where 𝑥 is the unknown parameters to be estimated, Φ𝑘  and 

𝑦𝑘  denote the input and output of the system, respectively. 

The update rule for RLS is: 

 

𝑥̂𝑘+1 = 𝑥̂𝑘 + 𝐺𝑘+1[𝑦𝑘+1 − Φ𝑘+1
𝑇 𝑥̂𝑘]    

                 𝐺𝑘+1 = 𝑃𝑘Φ𝑘+1 
𝑇 [𝐼 + Φ𝑘+1

𝑇 𝑃𝑘Φ𝑘+1]
−1           (4) 

𝑃𝑘+1 = (𝑃𝑘 − 𝐺𝑘+1Φ𝑘+1
𝑇 𝑃𝑘)/ 

 

where 𝐼 is the identity matrix;  is the forgetting factor; 𝐺𝑘 

and 𝑃𝑘 the gain and covariance matrices, respectively. 

The RLS algorithm can be implemented to estimate dq-axis 

inductance, the corresponding model will be: 

 

𝑥 = [
𝐿𝑞

𝐿𝑑
] , Φ = [

−𝜔(𝑘)𝑖𝑞(𝑘)                 0

   0                      𝜔(𝑘)𝑖𝑑(𝑘)
]     (5) 

                𝑦 = [
𝑢𝑑(𝑘) − 𝑅𝑖𝑑(𝑘)

𝑢𝑞 − 𝑅𝑖𝑞(𝑘) − 𝜓𝑚𝜔(𝑘)
]                           (6) 

2.3. Extended Kalman Filter 

The EKF algorithm is an extended version of Kalman Filter, 

which deals with non-linear problem. The system model for 

EKF is expressed as:  

 

𝑥𝑘+1 = 𝐹𝑘(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘 

                              𝑦𝑘 = 𝐻(𝑥𝑘) + 𝑣𝑘                                  (7) 

 

In which 𝑥𝑘 = [𝑖𝑑 𝑖𝑞 𝑝1    𝑝2]𝑇 is the state vector, where 

𝑝1  and 𝑝2  are two arbitrary machine parameters. 𝑦𝑘 =

[𝑖𝑑    𝑖𝑞]
𝑇

 is the system output.  𝑢𝑘 = [𝑢𝑑
∗     𝑢𝑞

∗ ]  is the 

control input. 𝑤𝑘  (system noise) and 𝑣𝑘  (measurement 

noise) are zero-mean white Gaussian noises with covariance 

matrices Q and R, respectively. 𝐹𝑘(𝑥𝑘 , 𝑢𝑘)  and 𝐻(𝑥𝑘) 

denote the prediction and transformation functions, 

respectively. Further, the discrete system function 𝐹𝑘  is 

show in (8). The EKF recursively finds the optimal state 

estimate 𝑥̂𝑘|𝑘  as the mean of the normal distribution 

represented by the covariance matrix 𝑃𝑘|𝑘. 

 

      𝐹𝑘 =

[
 
 
 
 
 𝑖𝑑,𝑘 (1 −

𝑅

𝐿𝑑
𝑇𝑠) +

𝐿𝑞

𝐿𝑑
𝜔𝑖𝑞,𝑘𝑇𝑠 +

𝑢𝑑

𝐿𝑑
𝑇𝑠

𝑖𝑞,𝑘 (1 −
R

𝐿𝑞
𝑇𝑠) −

𝐿𝑑

𝐿𝑞
𝜔𝑖𝑑𝑇𝑠 +

𝑢𝑞

𝐿𝑞
𝑇𝑠 −

𝜙𝑚

𝐿𝑞
𝑇𝑠

𝑝1

𝑝2 ]
 
 
 
 
 

  (8) 

The EKF starts with predicting the new state vector given 

the previous estimation consisting of 𝑥̂𝑘−1|𝑘−1  with 

𝑃𝑘−1|𝑘−1 and 𝑢𝑘−1. 

 𝑥̂𝑘|𝑘−1 = 𝐹𝑘(𝑥̂𝑘−1|𝑘−1, 𝑢𝑘−1) 

          𝑃𝑘|𝑘−1 = 𝐹𝑘−1𝑃𝑘−1|𝑘−1𝐹𝑘−1
𝑇 + 𝑄                              (9) 

where 𝐹𝑘−1 =
𝜕𝐹𝑘(𝑥𝑘−1|𝑘−1,𝑢𝑘−1)

𝜕𝑥
.   

Then, in the second step, EKF will correct the prediction 

using the most recent measurement, which is expressed as: 

 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅)
−1

 

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐾𝑘(𝑦𝑘 − 𝐻(𝑥̂𝑘|𝑘−1))   

     𝑃𝑘|𝑘  = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝐻𝑘𝑃𝑘|𝑘−1                              (10) 

 

where 𝐻𝑘 =
𝜕𝐻(𝑥𝑘|𝑘−1)

𝜕𝑥
, 𝑦𝑘 is the measured output and 𝐾𝑘 is 

the Kalman gain. 

2.4. Adaline Neural Network 

The mathematical model of an Adaline Neural Network is: 

                𝑂(𝑊𝑖 , 𝑋𝑖) = ∑ 𝑊𝑖𝑋𝑖  

𝑛

𝑖 = 0

                                      (11) 

where 𝑊𝑖 is the weight, 𝑋𝑖 and 𝑂(𝑊𝑖 , 𝑋𝑖) denote the input 

and output of the model, respectively. The update rule for 

Adaline NN is expressed as: 

 

𝑝̂(𝑘 + 1) = 𝑝̂(𝑘) − 𝜂
𝜕𝑑(𝑘)

𝜕𝑝
×

𝜕(𝑂(𝑘) − 𝑑(𝑘))

𝜕𝑑

2

     12) 

 

where 𝑑  and 𝑝̂  are the output of the IPMSM and the 

parameter to be estimated, respectively. 𝜂  denotes the 

convergence speed. The Adaline NN model can be 

implemented given (2). For example, to estimate q-axis 

inductance, the corresponding equation is applied: 

𝐿̂𝑞(𝑘 + 1) = 𝐿̂𝑞(𝑘)

+ 2𝜂𝜔(𝑘)𝑖𝑞(𝑘)(𝑢̂𝑑(𝑘) − 𝑢𝑑(𝑘))   (13) 

2.5. Proposed Neural Network method 

The proposed solution aims to track four machine 

parameters, which can take on different values at different 

points in time. Then, if only one Artificial NN model is 

employed to track the variations of all parameters, 

preparing the training set for that model will be difficult to 

achieve high generalization. Therefore, one Artificial NN 

model (estimator) should be used to estimate one 

parameter, so that for each NN model, the training set can 

be obtained with one parameter varied while the others are 

fixed.  

Remark 1: As the machine parameters can vary 

independently, using different Artificial NN models to 

estimate them facilitates acquiring the training set.   

Concurrently estimating 4 parameters is associated with the 

possibility that the variation of one parameter will affect 

the inputs shared among 4 NN models, which, in turn, 

causes wrong estimation results. Hence, the proposed 

solution will estimate parameters sequentially, then the 

variation of one parameter can be considered in estimating 

other parameters. 

Remark 2: Sequentially estimating parameters ensures that 

the variation of one parameter will not affect the estimation 

results.  
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In this proposed solution, d-axis current injection is used to 

change the state of IPMSM, from which the machine 

parameters will be sequentially estimated. Given (1), the 

two sets of IPMSM state equations are:  

 

𝑢𝑑0(𝑘) = −𝐿𝑞0(𝑘)𝜔(𝑘)𝑖𝑞0(𝑘)                                      (14𝑎) 

𝑢𝑞0(𝑘) = 𝑅(𝑘)𝑖𝑞0(𝑘) + 𝜓𝑚0(𝑘)𝜔(𝑘)                         (14𝑏) 

𝑢𝑑(𝑘) = 𝑅(𝑘)𝑖𝑑(𝑘) − 𝐿𝑞(𝑘)𝜔(𝑘)𝑖𝑞(𝑘)                      (14𝑐) 

𝑢𝑞(𝑘) = 𝑅𝑖𝑞(𝑘) + 𝐿𝑑𝜔(𝑘)𝑖𝑑(𝑘) + 𝜓𝑚(𝑘)𝜔(𝑘)      (14𝑑) 

 

in which, the variables and parameters with and without 

subscripts “0” denote the measured data when 𝑖𝑑 = 0 (𝐴) 

and 𝑖𝑑 = −2(𝐴), respectively. 

It is assumed that 𝐿𝑞0 = 𝐿𝑞 and 𝜓𝑚0 = 𝜓𝑚. The inputs to 

each NN model are determined from (14). For example, to 

estimate 𝐿𝑞0 , the inputs to the corresponding NN model 

include 𝑢𝑑0(𝑘), 𝜔(𝑘) 𝑎𝑛𝑑 𝑖𝑞0(𝑘)  as presented in (14a). 

Further, instead of feeding the inputs directly to each NN 

model, several tests conducted suggest that if the inputs to 

an NN model can be simplified, it can give better 

estimation results. In this proposed solution, each NN 

model will have one input and one output (one-to-one NN 

model). Therefore, there will be 4 NN models with the 

corresponding input/output summarized in Table 1 and the 

estimation process is presented in Figure 1. Specifically, 

when 𝑖𝑑 = 0 (𝐴) , NN models to identify 𝐿𝑞  and 𝑅  are 

enabled, while the other two models to identify 𝐿𝑑 and 𝜓𝑚 

are disabled and vice versa when 𝑖𝑑 = −2 (𝐴). It is noted 

that estimation process requires a time delay after current 

switching, which avoids the effect of current switching and 

ensures the stability of the estimated parameters. 

Remark 3: An NN model might fail to map its inputs to a 

correct output, then preprocessing the inputs can improve 

its estimation accuracy.  

Different neural network structures have been tested with 

different number of hidden neurons and different hidden 

transfer functions. Finally, one common neural network 

configuration is chosen for four parameter estimators, 

which is shown in Figure 2.  

 
Figure 1: Estimation process based on d-axis current injection. 

Table 1: NN model summary 

Model Output Input 

1 𝐿𝑞0 = 𝐿𝑞 −𝑢𝑑0(𝑘)

𝜔(𝑘)𝑖𝑞0(𝑘)
 

2 𝜓𝑚0 = 𝜓𝑚 𝑢𝑞0(𝑘) − 𝑅(𝑘)𝑖𝑞0(𝑘)

𝜔(𝑘)
 

3 𝑅 𝑢𝑑(𝑘) + 𝐿𝑞(𝑘)𝜔(𝑘)𝑖𝑞(𝑘)

𝑖𝑑(𝑘)
 

4 𝐿𝑑 𝑢𝑞(𝑘) − 𝑅(𝑘)𝑖𝑞(𝑘) − 𝜓𝑚(𝑘)𝜔(𝑘)

𝜔(𝑘)𝑖𝑑(𝑘)
 

 
Figure 2: The common NN configuration for all parameter estimators. 

A hyperbolic tangent sigmoid function is chosen as the 

activation function for the input and hidden layer, and 

relationship between its input and output of this layer can 

be expressed as: 

𝑛1 = 𝑊1 ∗ 𝑝 + 𝑏1                                                          (15𝑎) 

𝑎1 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝑛1) =
2

1 + 𝑒−2𝑛1
− 1                          (15𝑏) 

Meanwhile, a pure linear function is chosen as the 

activation function for the output layer, which gives the 

following relationship: 

𝑛2 = 𝑊2 ∗ 𝑎1 + 𝑏2                                                        (16𝑎)  

𝑎2 = 𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑛2) = 𝑛2                                              (16𝑏) 

The reason for selecting the hyperbolic tangent for the 

input, and hidden layers is that the nonlinear hyperbolic 

tangent can help the model to learn more complex 

functions than using a linear activation function. For the 

output layer, the pure linear function was selected as the 

activation function to make the training process faster since 

the pure linear function does not require the update of the 

weight for this activation function [19]. 

The block diagram for the proposed solution is shown in 

Figure 3 which consists of 4 one-to-one NN estimators and 

two triggers to enable these estimators. 

3. Simulation setup and results 

3.1. Simulation setup 

In this paper, the proposed solution is applied to a IPMSM 
drive system implemented in MATLAB/Simulink software, 
which employs Field-oriented control (FOC) algorithm. 
The simulation time (𝑇𝑠𝑎𝑚𝑝𝑙𝑒) is set at 10−4 s. The nominal 

machine parameters are presented in Table 2.  
 

Table 2: Nominal parameters of the IPMSM motor 

Parameter Value 

𝐿𝑑(𝐻) 0.045 

𝐿𝑞(𝐻) 0.102 

𝜓𝑚(𝑊𝑏) 0.533 

𝑅(Ω) 5.8 

 

The d-axis and q-axis inductances of the machine were first 

measured experimentally by using the standstill test. These 

measured parameters were used to build the simulation 

model of the IPMSM in the Matlab/Simulink. The data 

used for training each NN model are collected from 

simulation of the IPMSM drive system at different load 
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torques, different values of 𝜓𝑚  and R. Specifically, by 

varying one parameter, while fixing other parameters at 

their nominal values, one training set is acquired. For 

example, the NN model to identify R is trained with the 

data set, in which actual R increases while the other 

machine parameters are fixed at their nominal values. 

Similar steps are repeated to acquire the training set for 

other three NN models. 20001 samples are collected for 

training each NN model with the ratio of 70:15:15 for 

training, validation and test sets, respectively. The number 

of epochs is set to 1000 and the minimum gradient is set to 

1𝑒−15  to ensure all NN models will not be underfitting. 

Each model performance is evaluated based on Mean 

Square Error (MSE) as shown in Figure 4. Furthermore, all 

NN models are trained with Levenberg-Marquardt back-

propagation algorithm with mu is set to 0.001. According 

to the results shown in Figure 4, the validation and test 

curves are similar. This indicates the successful training 

processes for all estimators. 

3.2. Simulation results and discussion 

The performance of the proposed online parameter 

identification method was compared with RLS, EKF and 

Adaline NN. It is worth noting that the implemented EKF 

can only estimate R and 𝜓𝑚, while RLS and Adaline NN 

can estimate all four parameters. Figure 5 shows the 

estimation results for different techniques with constant 

machine parameters. In general, the outputs for all 

techniques converge if not considering slight fluctuations 

due to the effect of injected 𝑖𝑑 signal. Further, it could be 

seen that the proposed NN model outperforms other three 

techniques in terms of estimation accuracy and 

convergence speed. The explanation for this is that RLS, 

EKF and Adaline NN require accurate inputs to produce 

accurate outputs. On the other hand, the proposed NN tries 

to map its input to the corresponding output, then the 

estimation accuracy depends on how the NN model is 

trained instead of how accurate its input is. For example, if 

the 𝑑𝑞-axis voltages are not well-compensated, RLS, EFK 

and Adaline NN might fail to estimate parameters. 

However, if the error between 𝑑𝑞-axis voltages fed to the 

NN estimators and actual 𝑑𝑞-axis voltages does not vary 

significantly over time, the proposed technique will 

produce better results as presented in Figure 5.  
More comprehensive test cases were conducted to further 
evaluate performance of the proposed solution as following: 

 

   
                         (a)                                             (b) 

  
                          (c)                                            (d) 

 
Figure 4: Learning curves for four NN estimators. (a) Flux estimator. 

(b) Q-axis inductance estimator. (c) D-axis inductance estimator. (d) 

Resistance estimator. 

Figure 3: The proposed solution block diagram. 



Measurement, Control and Automation 13 

 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 5: Estimation results for different techniques at 𝜔 = 1000 𝑟𝑝𝑚 

with 𝑇 = 5 𝑁.𝑚,   𝑅 = 5.8 𝛺 𝑎𝑛𝑑 𝜓𝑚 = 0.533 𝑊𝑏. (a) Estimated 𝐿𝑑; 

(b) Estimated 𝐿𝑞 ; (c) Estimated R; (d) Estimated 𝜓𝑚. 

3.2.1. Varying load torque test 

This test was conducted to verify the effectiveness of the 
proposed technique in tracking the variation of inductances 
due to varying load torque (T). The IPMSM was run at the 
constant speed of 1000 𝑟𝑝𝑚  with 𝑅 = 5.8  Ω , 𝜓𝑚 =
0.533 𝑊𝑏 and during the simulation and load torque was 
changed from 4 to 5 𝑁.𝑚 at around 1.05s as presented in 
the upper-left plot in Figure 6. Because of the d-axis current 
injection effect, the reference 𝐿𝑞 shows the similar shape 

as a square wave, having the peak-to-peak value in the 
order of one thousandth, which can be negligible. After the 

change in the load torque, the reference and estimated 𝐿𝑞 

agree well with each other, which are at 0.109H and 
0.109H, respectively. No noticeable change in 𝐿𝑑  can be 
observed from the upper-right plot in Figure 6. At the same 
time, the other two estimated parameters converge to their 
reference values. 

 

 
 

Figure 6: Estimation results for the proposed technique at 𝜔 =
1000 𝑟𝑝𝑚 with load torque varying from 4 𝑁.𝑚 to 5 𝑁.𝑚, 𝑅 =  5.8 𝛺 

and 𝜓𝑚  =  0.533 𝑊𝑏. 

3.2.2. Varying flux test 

In this test, the IPMSM speed, R and load torque were set 
at 1000 𝑟𝑝𝑚, 5.8 Ω and 5 𝑁.𝑚, respectively, while only 
𝜓𝑚 was changed from 0.533 Wb to 0.528 Wb at around 
1.19s as shown in the lower-right plot in Figure 7. At 0.69s, 
the estimated 𝜓𝑚 converges to 0.53 Wb, which is closed to 
its reference value of 0.533 Wb. After 1.19s, the reference 
𝜓𝑚 drops to 0.528 Wb and the flux estimator can track the 
drop by producing the output of 0.527 Wb. The proposed 
method shows the small difference in the estimated and 
reference 𝜓𝑚. 
 

 
 

Figure 7: Estimation results for the proposed technique at 𝜔 =
1000 𝑟𝑝𝑚 with 𝜓𝑚 varying from 0.533 Wb to 0.528 Wb, 𝑇 =  5 𝑁.𝑚 

and 𝑅 = 5.8 𝛺. 

3.2.3. Varying resistance test 

The third test is to evaluate the performance of the 
proposed technique in tracking the variation in R. The 
working condition for this test was set such 
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that  𝑙𝑜𝑎𝑑 𝑡𝑜𝑟𝑞𝑢𝑒 = 5 𝑁.𝑚 , 𝜓𝑚 = 0.533 𝑊𝑏  and R 
varying from 5.8 Ω to 6.3 Ω at 0.91s as presented in the 
lower-left plot in Figure 8. At 1.5s, the cursor indicates that 
the estimated R lies at 6.15 Ω, while its reference value is 
at 6.3 Ω. The difference of less than 3% shows that the 
proposed solution has successfully track the change in R.  

 
 

 
 

Figure 8: Estimation results for the proposed technique at 𝜔 =
1000 𝑟𝑝𝑚 with R varying from 5.8𝛺 to 6.3 𝛺, 𝑇 =  5 𝑁.𝑚 and 𝜓𝑚  =

0.533 𝑊𝑏. 

3.2.4. Varying speed test 

In the last test, the IPMSM was given a speed step from 
700 𝑟𝑝𝑚 to 1000 𝑟𝑝𝑚 at around 1.18 s as shown in the 
lower-right plot in Figure 9. Meanwhile, T, R and 𝜓𝑚 were 
set at 5 𝑁.𝑚, 5.8 Ω and 0.533 Wb, respectively. 

 

 
 

Figure 9: Estimation results for the proposed technique with 𝑇 =
5 𝑁.𝑚, 𝜓𝑚 = 0.553 𝑊𝑏, 𝑅 = 5.8 𝛺 and speed varying from 700 to 

1000 rpm. 

When the speed increases, the drive system enters transient 
state, which leads to a variation in the input to R estimator. 
As a result, there is a step change in the estimated 𝑅 after 
0.82s. However, at 1.3s, the estimated R drops to 5.8 Ω 
because the system has become stable. In this test, the other 
estimated parameters experience no significant change due 
to the step change in speed. Hence, the proposed solution 
shows accurate estimation of all four parameters in the case 
of operating speed variation. 

3.2.5. Discussion 

The simulation results have been presented to compare the 

performance the EKF, RLS, Adaline NN and the proposed 

NN based methods in terms of the estimation accuracy and 

the updated time of the IPMSM’ s parameters including 

stator resistance, d-q axis inductances and the rotor flux 

linkage. The performance of every method is summarized 

in Table 3. In general, the advantage of the EKF method is 

that no current injection is required. However, this method 

fails to estimate the variation of the machine inductances 

since nominal values of the machine inductances are 

required to develop the estimator for the stator resistance 

and the rotor flux linkages. This EKF method also produce 

low accuracy due to the effect of the non-linearity of the 

inverter to the accuracy of the dq- voltages. Furthermore, 

the update time of the estimated parameters is slow due to 

the recursive nature of the algorithm. The difficulty in 

tuning of the covariance matrices (P and Q) is also the 

challenge of this method. Better than the EKF method in 

terms of the number of estimated parameters, the RLS 

methods can estimate four parameters at the same time. 

However, the low accuracy and slow update time are the 

major disadvantages of this method. The reasons for these 

disadvantages are also the same for the EKF method, 

namely as non-linearity effect of the inverter and slow 

recursive iterations. On the other hand, the Adaline neural 

network is shown to be more advantageous compared to 

EKF and RLS in terms of the update time of the parameter. 

This is because the algorithm of ANN is simple and 

requires less computation time [4]. However, this method 

still suffers low estimation accuracy due to the non-

linearity effect of the inverters. Finally, the proposed NN 

based method have been proved to be more advantageous 

compared to the remaining methods with high estimation 

accuracy and fast update capability since the there is no 

impact of the non-linearity of the inverter to the estimator 

and there is no recursive iteration of the method. The 

machine parameters are estimated based on non-linear 

regression principle, of which the change of the measured 

input voltage and current results in a variation of the 

estimated parameters. The major limitation of the proposed 

method is the requirement for the offline model training 

and the variation of the parameters must be within the range 

of the training data. 

 
Table 3: Performance comparison of the online parameter identification 

methods 

Methods 𝑅𝑠 𝐿𝑑 𝐿𝑞   ψm Accuracy Update 

time 

EKF Yes No No Yes Low Slow 

RLS Yes Yes Yes Yes Low Slow 

Adaline NN Yes Yes Yes Yes Low Fast 

Proposed Yes Yes Yes Yes High Fast 

4. Conclusion 

This paper has presented a new approach to deal with 
IPMSM parameter identification problems based on 
Artificial Neural Network model. Four neural network 
models have been proposed to estimate stator resistance, d- 
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axis, q- axis inductance and the rotor flux linkage, 
respectively. The input of every NN estimator is the 
function of the specific measured signals including 
estimated d-q axis voltages, measured d-q currents and the 
rotor speed. The simulation results have proved that the 
proposed technique outperforms EKF, RLS and Adaline 
NN methods, which require accurate signal measurement 
and are heavily affected by the non-linearity of the inverter. 
Furthermore, the proposed technique has shown its ability 
to effectively track the change in all parameters under the 
variation of load torque, speed, stator resistance and rotor 
flux linkage. The future work of this project will be the 
experimental implementation and analysis of the proposed 
and the conventional online parameter identification 
methods. 
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