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Abstract

This work introduces a new method to decrease the complexity of Takagi-Sugeno (TS) representations with sector nonlinearity. Takagi-
Sugeno (TS) fuzzy control is a structured method deal with managing non-linear systems, first introduced in 1985. It depends on the
utilization of fuzzy system, which represent a collection of If-Then fuzzy regulations with regional linear descriptions in the consequent
parts. The proposed method uses linear interconnections among submodels to simplify the TS fuzzy model, resulting in fewer rules and
maintaining equivalence to the original model. The simplified model is demonstrated as a combination of (p+ 1) matrices that are affine,
with stability analysis and controller design performed using linear matrix inequalities. The suggested technique has been shown on inverted
pendulum model, showing the benefits of reduced complexity for of nonlinear control systems. The reduced-complexity model may result in
conservative stability conditions compared to the classical TS fuzzy approach, but offers a significant reduction in numerical complexity and
increased computational efficiency for complex systems.
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1. Introduction

Nonlinear fuzzy control is a methodology for controlling non-
linear systems that involves the use of fuzzy logic concepts
to model and control complex, nonlinear behaviors. Nonlin-
ear systems can be difficult to model and control using tra-
ditional linear control methods, making nonlinear fuzzy con-
trol a valuable tool for addressing these challenges. One of the
most commonly used approaches in nonlinear fuzzy control is
Takagi-Sugeno control methodology [1] , [2].
A collection of If-Then fuzzy regulations portrays TS fuzzy
models, where the consequent parts of the rules are local lin-
ear representations. Combining multiple regional linear sub-
models with membership functions results in a state-space
configuration. These models are powerful tools for develop-
ing function approximation, system identification, and control
design, especially for nonlinear systems that are difficult to
model using traditional linear control methods [3] , [4].
TS fuzzy control has a wide range of applications such as
robots [5], [6], [7], [8]; the permanent magnet synchronous
motor [9], tower crane [10], spacecraft system [11], a hy-
draulic turbine [12]... A crucial benefit of TS fuzzy control is
its methodical strategy for managing non-linear systems. The
utilization of this technique relies on mathematical models to
represent the system, making it possible to perform stability
analysis and design controllers that are well-suited for the spe-
cific system. In addition, the use of fuzzy logic concepts pro-
vides a means of representing complex, nonlinear behaviors

in a way that is more intuitive and easier to understand than
traditional linear control methods.
Another advantage of TS fuzzy control is that it offers a robust
resolution for creating function approximation and identifying
systems. This is because the fuzzy models used in TS fuzzy
control can be used to approximate the behavior of the nonlin-
ear system, even when the underlying dynamics are not fully
understood. This makes it possible to develop models that are
accurate and robust even when dealing with highly nonlinear
systems. But the performance of TS fuzzy control can be af-
fected by the choice of membership functions, which can be
difficult to tune in real-world applications. Despite its limita-
tions, the use of TS fuzzy control is growing in popularity due
to its versatility and ability to handle a wide range of nonlinear
systems.
Reducing the number of fuzzy rules in Takagi-Sugeno (TS)
control is necessary due to several factors. One of the main
factors is to simplify control system design and implementa-
tion, especially for real-time implementation in systems that
are highly non-linear and contain a vast number of premise
variables. This is because having a large number of fuzzy
rules can make the design process complex and difficult to
implement in real-time. Another reason is that having a large
number of fuzzy rules can increase the computational burden
on the system, making the control process slow and less effi-
cient. Furthermore, having a large number of fuzzy rules can
also lead to overfitting and decreased accuracy in the control
process, making it less effective.
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By decreasing the quantity of fuzzy regulations, the complex-
ity of the control system can be reduced, making it more ef-
ficient and effective. This can result in improved control per-
formance and stability, making it easier to implement in real-
world systems. Additionally, diminishing the quantity of fuzzy
regulations can make it easier to analyze the stability and dura-
bility of system control, allowing for more accurate and effec-
tive control design. Finally, diminishing the quantity of fuzzy
regulations can make it easier to extend the control system
to new applications, making it more flexible and adaptable to
changing requirements.
The primary contribution of this paper is the proposal of a
novel method to format the TS fuzzy model while reducing
the number of fuzzy rules. By expressing the model in a new
format, the number of rules is minimized, which can lead to a
more straightforward implementation of the controller. In or-
der to showcase the efficacy of the suggested approach, the
inverted pendulum model is utilized as an example, and the
simulation results show good performance in stabilizing the
system. The simulation results suggest that the new TS fuzzy
model format can effectively model complex nonlinear sys-
tems and can provide a more straightforward approach to de-
signing a controller.
The next section of this paper focuses on the design and anal-
ysis of the TS fuzzy model. The section discusses the pro-
cess of reducing the model’s complexity by applying fuzzy
logic, which involves the formulation of a reduced model with
a fewer number of rules. Then, the paper presents the model-
ing and design of a control system using the TS fuzzy model,
with a focus on the application in the inverted pendulum sys-
tem. The section concludes with a detailed presentation of the
simulation results, which showcase the efficacy of the sug-
gested approach in stabilizing the inverted pendulum. Finally,
the paper provides a conclusion that summarizes the primary
results of the study and highlights the significance of the pro-
posed approach in controlling nonlinear systems.

2. Design and Analysis of Takagi-Sugeno Fuzzy
Models

The TS system equation is a mathematical representation of a
nonlinear system using a fuzzy modeling approach. It is based
on a collection of fuzzy rules in the form of "If-Then" state-
ments, where the antecedent parts are the premise variables
and the consequent parts are local linear representations of
the system. The TS system equation is obtained by combin-
ing the local linear representations using a convex sum with
weights represented by membership functions. The member-
ship functions determine the contribution of each local linear
representation to the overall fuzzy model.
The TS system equation presents as:

ẋ(t) =
ω

∑
i=1

ηi(x(t))(Aix(t)+Biu(t)) (1)

with the input u(t),the state vector x(t), number of fuzzy rules
ω , membership function ηi(x(t)) for the ith fuzzy rule, and Ai
and Bi are the state and input matrices of the ith local linear
representation, respectively.
The normalized membership function, denoted by ηi(x(t)),
is a real-valued function that maps the state of the system,
x(t), to a value in the interval [0,1]. It represents the degree

of "membership" or "belonging" of x(t) to the i− th fuzzy set
in the Takagi-Sugeno fuzzy model. The membership function
can be defined in various ways and the choice of the function
depends on the particular application and the characteristics of
the system being modeled. Some common forms of member-
ship functions include triangular, trapezoidal, Gaussian, and
sigmoid functions. The membership function at x(t) deter-
mines relative importance or weight of the i− th local linear
representation in the overall fuzzy model output. If ηi(x(t)) is
close to 1, then the i− th fuzzy rule is more important or dom-
inant in that region of the state space, and if ηi(x(t)) is close
to 0, then the i− th fuzzy rule is less important or dominant in
that region.

The equivalent representation of Equation (1) would be as fol-
lows:

ẋ(t) =
ω

∑
i=1

ηi(z(t))(Ai(z(t))x(t)+Bi(z(t))u(t)) (2)

where the vector of premise variable z(t) is a q−vector, z(t) =
{z1(t),z2(t), ...,zq(t)}. It is assumed that the function z(t) is:

zmin
k ≤ zk ≤ zmax

k , ∀k ∈ {1,2, . . . ,q}. (3)

With the n-vector of state variables x(t) = (x1,x2, ...,xn)
⊤, the

function of zk can be determined as zk = f (x1,x2, ...,xn). The
method for calculating the membership function is as follows:

ηi(x(t)) =
q

∏
k=1

ζb
k (zk) (4)

The sector nonlinearity approach is a fuzzy logic method used
to represent the nonlinear relationship between input and out-
put variables in fuzzy control systems. It assigns two mem-
bership functions, b has the value of {0,1},ζ 0 and ζ 1, to each
premise variable z(t). ζ 0 representing the lower sector and ζ 1

the upper sector of z(t). The values of ζ 0 and ζ 1 can be deter-
mined.

ζ 0
k (zk) =

zmax
k − zk

zmax
k − zmin

k
(5)

ζ 1
k (zk) =

zk − zmin
k

zmax
k − zmin

k
(6)

ζ 0
k +ζ 1

k = 1 (7)

with ζ 0
k , ζ 1

k ∈ [0,1].

The convex-sum property is verified by normalized member-
ship functions.

ω

∑
i=1

ηi = 1, ηi ≥ 0 (8)

The A matrices of the fuzzy controller will be configured as
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follows:

A1 = A (zmin
1 ,zmin

2 ,zmin
3 , . . . ,zmin

q−2,z
min
q−1,z

min
q )

A2 = A (zmin
1 ,zmin

2 ,zmin
3 , . . . ,zmin

q−2,z
min
q−1,z

max
q )

A3 = A (zmin
1 ,zmin

2 ,zmin
3 , . . . ,zmin

q−2,z
max
q−1,z

min
q )

...

A2q−1 = A (zmin
1 ,zmax

2 ,zmax
3 , . . . ,zmax

q−2,z
max
q−1,z

max
q )

A2q−1+1 = A (zmax
1 ,zmin

2 ,zmin
3 , . . . ,zmin

q−2,z
min
q−1,z

min
q )

...
A2q = A (zmax

1 ,zmax
2 ,zmax

3 , . . . ,zmax
q−2,z

max
q−1,z

max
q )

(9)

3. Reduction Model in applying Takagi-Sugeno
Fuzzy Logic

3.1. Fuzzy model reduction

In this section, we emphasize the use of fuzzy logic and reduc-
tion models for achieving better results with less complexity.
The application of fuzzy logic allows for the handling of un-
certainty and imprecise information, while reduction models
help to simplify complex data sets.
The choice of matrix A in a fuzzy model can significantly
impact its performance. Using too many matrices A can re-
sult in increased complexity and reduced accuracy. Therefore,
it’s essential to choose the appropriate matrices A based on
the specific application. One common approach to selecting
matrices A is to use clustering algorithms to group similar
data points and generate representative matrices. This method
helps reduce the number of matrices A required while main-
taining the accuracy of the fuzzy model. Another approach is
to perform a sensitivity analysis on the fuzzy model to deter-
mine the effect of different matrices A on the model’s perfor-
mance. This analysis involves testing the model with different
matrices A and evaluating the resulting performance metrics
to determine which matrices A produce the best outcomes.
Ultimately, the choice of matrices A will depend on the spe-
cific requirements of the application and the available data.
It’s essential to carefully consider the impact of different ma-
trices A on the fuzzy model’s performance to ensure optimal
results.

Theorem 1. The model for the nonlinear system described in
equation (1) contains 2q rules, which can reduce the number
of rules in a Takagi-Sugeno model with (q+1) fuzzy rules.

ẋ(t) =
N

∑
j=1

η j(x(t))(A jx(t)+B ju(t)) (10)

where j ∈ the set {1,2,3,7, . . . ,2q − 1} that has (q+ 1) el-
ements and matrices Ai in S = {Ai : i ∈ {1,2,3,7, . . . ,2q −
1}} The 2q fuzzy rules in the TS model of the nonlinear sys-
tem in equation (1) can be constructed by combinations of
fuzzy sets for all input variables. Each of these combinations
with the local linear matrices Ai corresponds to a fuzzy rule
in the TS model. However, the TS model can be simplified by
using only a subset of these fuzzy rules, which is known as
a (q+ 1)-rules reduction. A membership function η j assured
convex sum property.

Proof: The expressions below can be readily proven due to the
property of generating Ai submatrices in equation (9).

A2 −A1 = A4 −A3 = . . .= A2q −A2q−1

A4 −A1 = A8 −A5 = . . .= A2q −A2q−3

...
A2q−1 −A1 = A2q −A2q−1+1

(11)

The equation that describes the linear relationships in (11) can
be expressed as:

A2m −A1 = A2mν −A2mν−1+1 (12)

with ν ∈ {1,2,3, . . . ,2q−m} and m∈ {1,2,3, . . . ,q−1}. In the
case m = 1, the result is:

A2 −A1 = A2l −A2l−1, l ∈ {1,2,3, . . . ,q} (13)

Therefore, by replacing the matrices A2m with a linear combi-
nation of unitary elements, for all values of m that belong to
the set (2,3, ...,q), a total of q−1 substitutions can be made.
It is a simple task to confirm that this is true for any positive
integers ν ∈ N and m, l ∈ N∗.

A2l−1 = A2mν+1 ⇒ 2l −1 = 2mν +1 (14)

⇒ 2l = 2mν +2 (15)

⇒ 2l−1 −1 = 2m−1ν (16)

⇒ (l = 1,ν = 0) or (m = 1,ν = 2l−1 −1)
(17)

Equation (12) consists of several sets of matrices, where solely
the initial group (with m= 1) comprise components other than
the matrix A1. Each m−th set of matrices in equation (12) in-
volves 2q+1−m matrices and includes all the matrices that ap-
pear within the group (m+1)− th of formulas. Consequently,
the quantity of matrices present within m− th group of for-
mulas that do not have the structure A2l .

2q+1−m − [2q−m − (q−m)]− (q−m+1)+1 = 2q−m (18)

By utilizing both (13) and the overall equation (12) for values
of m ranging from 2 to q−1, each group of equations enables
the replacement of 2q−m −1 terms with a sum of linear terms
from m = q−1, via substitution.

A2q−1+1 = A2q −A2q−1 +A1 (19)
= A2q−1 +A2 −A1 −A2q−1−1 −A2 +A1 +A1

(20)

= A2q−1 −A2q−1−1 +A1 (21)

If we substitute incrementally for m, starting with 2 and going
up to q− 1, the total number of substitutions made would be
the sum of ∑q−1

m=2 2q−m −1 = 2q−1 −q. However, none of the
matrices that are substituted are part in S , excluding A1. This
is because the other elements of S are only used in the first
set of equations. The q+ 1 elements of S are not substituted,
so when m = 1, there are 2q−1 −1− (q+1) = 2q−1 −q sub-
stitutions. Thus, the total number of substitutions made would
be:

q−1+2q−1 −q+2q−1 −q = 2q −q−1 (22)
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By including the q+1 elements of set S , we can calculate the
number of rules, denoted as r, in the TS fuzzy model by taking
2 to the power of q. We can replace each matrix Ai that is not
in set S , in equation (2), with a unitary linear combination.
This will enable us to prove the theorem where η j satisfies the
convex sum property. This completes the proof.

3.2. Fuzzy controller design

The control signal is given by:

u(t) =−F jx(t) j = {1,2,3,7, . . . ,2q −1}. (23)

Theorem 2. The PDC (Parallel Distributed Compensation)
controller (23) ensures the asymptotic stability of the system
(1) if the LMI constraints presented below are fulfilled with a
shared positive definite matrix H and matrices Gn.{

Φmm < 0, ∀m,n ∈ {1,2,3,7, . . . ,2q −1}
Φmn +Φnm < 0, m < n; m,n ∈ {1,2,3,7, . . . ,2q −1}

(24)

with Φmn = AmX −BmGn +X A ⊤
m −G⊤

n B⊤
m. As a result,

the control gains of the PDC controller can be deduced in the
following manner:

Fn = GnX
−1 (25)

Proof: Let us contemplate a Lyapunov function candidate hav-
ing a positive definite matrix P:

V (x) = x⊤(t)Px(t). (26)

The above function can be obtained by following the deriva-
tion process below:

V̇ (x) = x⊤(t)
(
Ṗx(t)+P ẋ(t)

)
+ ẋ⊤(t)Px(t). (27)

It can be deduced that

V̇ (x) =
2q−1

∑
m=1

2q−1

∑
n=1

ηm(z(t))ηn(z(t))x⊤(t)[
(Am −BmFn)

⊤P +P(Am −BmFn)
]

x(t)

=
2q−1

∑
m=1

η2
m(z(t))x⊤(t)[

(Am −BmFm)⊤P +P (Am −BmFm)
]

x(t)

+2
2q−1

∑
m=1

2p

∑
m<n

ηm(z(t))ηn(z(t))x⊤(t)

×

[(
(Am −BmFn)+(An −BnFm)

2

)⊤
P

]
x(t)

+2
2q−1

∑
m=1

2p

∑
m<n

ηm(z(t))ηn(z(t))x⊤(t)

×
[
P

(Am −BmFn)+(An −BnFm)

2

]
x(t)

(28)

We have:
A ⊤

m P +PAm −F⊤
m B⊤

mP −PBmFm < 0
A ⊤

m P +PAm −F⊤
n B⊤

mP −PBmFn +A ⊤
n P +PAn

−F⊤
m B⊤

n P −PBnFm < 0
(29)

Y

X

O

u

m

M

Ɩ

θ

g

Figure 1. Modeling of an inverted pendulum.

If we multiply X = P−1 on both the left and right-hand side
of equation (29), we obtain:

X A ⊤
m +AmX −X F⊤

m B⊤
m −BmFmX < 0

X A ⊤
m +AmX −X F⊤

n B⊤
m −BmFnX +X A ⊤

n
+AnX −X F⊤

m B⊤
n −BnFmX < 0

(30)

For X > 0 and let Gn = FnX . Replacing the expression ob-
tained into the previous inequality leads to:

X A ⊤
m +AmX −G⊤

m B⊤
m −BmGm < 0

X A ⊤
m +AmX −G⊤

n B⊤
m −BmGn +X A ⊤

n +AnX

−G⊤
m B⊤

n −BnGm < 0
(31)

with Φmn =AmX −BmGn+X A ⊤
m −G⊤

n B⊤
m, the LMI con-

ditions can be derived by using the result of the previous anal-
ysis.

4. Control System Modeling and Design using
Fuzzy Logic: An Inverted Pendulum on a Cart
Example

4.1. Inverted Pendulum System Modeling and Analysis

The research employs a simple inverted pendulum model as
depicted in Figure 1. The model comprises a pendulum of
mass m (kg) and a cart of mass M (kg). The connecting rod
has a length l (m) and the rotational angle of the pendulum
from the y-axis is denoted by θ (rad). The force exerted on the
cart in the x-axis is u, while g is the gravitational acceleration
vector. We have:{

x̄ = xM + lsinθ
ȳ = lcosθ

(32)

with xM is the displacement of the cart.
As the mass of the connecting rod is negligible compared to
the cart, the total energy of the system can be expressed as
follows:
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L =
1
2
(M+m)ẋ2

M +
1
2

ml2θ̇ 2 +mlθ̇ ẋMcosθ −mglcosθ . (33)

The Euler-Lagrange equation is used to derive the kinematic
equation of the inverted pendulum:

d
dt
(

δL
δ q̇m

)− δL
δqm

= Qm. (34)

From equation (34), we have:{
(M+m)ẍM +mlθ̈cosθ −mlθ̇ 2sinθ = u
lθ̈ + ẍMcosθ −gsinθ = 0

(35)

We can obtain the equation that describes the angular dynam-
ics of the pendulum by manipulating the set of equations (35),
which can be expressed as follows:

θ̈ =
(M+m)gsinθ −mlθ̇ 2sinθcosθ −ucosθ

l[m(1− cos2θ)+M]
. (36)

Define x =
[
θ θ̇

]T , then the expression of equation (36) can
be written in the following form:

ẋ = A x+Bu (37)

where

A =

 0 1
(M+m)gsinθ

θ l[m(1− cos2θ)+M]

−mlθ̇sinθcosθ
l[m(1− cos2θ)+M]

 ,

B =

 0
−cosθ

l[m(1− cos2θ)+M

 .

4.2. TS controller design

The initial step is to define the premise variables as given be-
low:

z1 =
1

L[m(1− cos2θ)+M
,

z2 =
sinθ

θ
,

z3 = cosθ ,
z4 = θ̇sinθ .

(38)

Substituting the premise variables z into the matrices A , B
above we obtain:

A =

[
0 1

(M+m)gz1z2 −mlz1z3z4

]
, B =

[
0

−z1z3

]
.

Define:

hi0 =
zimax − zi

zimax − zimin
, hi1 = 1−hi0 (i = 1,2,3,4) (39)

The membership functions of the TS fuzzy model can be de-
fined as follows:

η1 = h10 ∗h20 ∗h30 ∗h40, η9 = h10 ∗h20 ∗h30 ∗h41,

η2 = h11 ∗h20 ∗h30 ∗h40, η10 = h11 ∗h20 ∗h30 ∗h41,

η3 = h10 ∗h21 ∗h30 ∗h40, η11 = h10 ∗h21 ∗h30 ∗h41,

η4 = h11 ∗h21 ∗h30 ∗h40, η12 = h11 ∗h21 ∗h30 ∗h41,
(40)

η5 = h10 ∗h20 ∗h31 ∗h40, η13 = h10 ∗h20 ∗h31 ∗h41,

η6 = h11 ∗h20 ∗h31 ∗h40, η14 = h11 ∗h20 ∗h31 ∗h41,

η7 = h10 ∗h21 ∗h31 ∗h40, η15 = h10 ∗h21 ∗h31 ∗h41,

η8 = h11 ∗h21 ∗h31 ∗h40, η16 = h11 ∗h21 ∗h31 ∗h41.

The model originally comprised of 16 fuzzy rules, however,
Theorem 1 enables reducing the rules to only five, namely the
1st, 2nd, 3rd, 7th, and 15th rules.

η1 = h10 ∗h20 ∗h30 ∗h40,

η2 = h11 ∗h20 ∗h30 ∗h40,

η3 = h10 ∗h21 ∗h30 ∗h40, (41)
η7 = h10 ∗h21 ∗h31 ∗h40,

η15 = h10 ∗h21 ∗h31 ∗h41.

The control signal of TS 16 rules model:

u16r(t) =− (F1η1 +F2η2 +F3η3 +F4η4 +F5η5 (42)
+F6η6 +F7η7 +F8η8 +F9η9 +F10η10

+F11η11 +F12η12 +F13η13 +F14η14 +F15η15

+F16η16)x(t).

The control signal of TS reduction rules model:

u5r(t) =−(F1η1 +F2η2 +F3η3 +F7η7 +F15η15)x(t).
(43)

5. Result

The system parameters for the pendulum in this study were
chosen as follows: m = 0.2 kg, g = 9.8 m/s2, M = 1 kg, l = 1 m,
and θ0 ∈ [−π/2;π/2]. Using these parameters, the values of
zimax and zimin were determined, and subsequently, the values
of hi0 and hi1 (39) and the membership functions (40) were
calculated. The feedback gains Fm were also computed by
solving the LMI using MATLABs Robust Control Toolbox.
The control signal u was determined (42,43). The simulation
results were then computed for different initial angles θ0
within the specified limits.

In these figures, the blue and red lines are the angle and its
velocity in two cases: the first case uses fuzzy controller with
reduction model (5 rules) and the other case uses fuzzy con-
troller with 16 rules. Fig 2, 3 show angle and angular velocity
of pendulum with θ0 = 15◦ and fig 4, 5 show in the case with
θ0 =−15◦.
The results in fig 2 suggest that both the reduction and full
TS fuzzy models effectively stabilize the inverted pendulum,
as evidenced by the convergence of the deflection angle after
about 2 seconds. However, the use of the full 16 fuzzy rules
results in a smoother graph of the deviation angle and angu-
lar speed than the reduced rule version. A subtle bend is ob-
served in the blue line at 1.25 seconds, which is also reflected
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Figure 2. Angle of pendulum with θ0 = 15◦.

Figure 3. Angular velocity of pendulum with θ0 = 15◦.

Figure 4. Angle of pendulum with θ0 =−15◦.

Figure 5. Angular velocity of pendulum with θ0 =−15◦.

in the angular speed in fig 3. Similarly, for the initial angle
of -15 degrees in fig 4, both models demonstrate quick con-
vergence, and the difference between the two curves with 16
and 5 fuzzy rules is negligible. The results indicate that the
proposed method is effective in ensuring the stability of the
pendulum, as both cases yield equally good outcomes despite
the reduction in model complexity.

6. Conclusion

In conclusion, Takagi-Sugeno (TS) fuzzy control methodol-
ogy is a powerful approach for controlling nonlinear sys-
tems, particularly those that are difficult to model using tra-
ditional linear control methods. However, reducing the num-
ber of fuzzy rules in TS control is necessary to simplify con-
trol system design, reduce computational burden, and improve
control performance and stability. This paper proposed a novel
method to format the TS fuzzy model while reducing the num-
ber of fuzzy rules, which was applied to the example of an in-
verted pendulum model. The simulation results demonstrated
the efficacy of the proposed approach in stabilizing the system
and providing a more straightforward approach to designing a
controller.
The reduction in the number of fuzzy rules also has implica-
tions for the extension of the control system to new applica-
tions, making it more flexible and adaptable to changing re-
quirements. Future research could explore the application of
the proposed approach to other nonlinear systems and investi-
gate the effects of different membership functions on the per-
formance of TS fuzzy control. In summary, the proposed ap-
proach offers a promising method for improving the effective-
ness and efficiency of TS fuzzy control in controlling complex
nonlinear systems.
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