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Abstract

This research introduces a novel approach to selecting and designing magnetic cores for DC power optimizers. Unlike traditional methods
that depend on the Area Product (Ap) and involve extensive trial and error to achieve the final design, the proposed methodology utilizes
two essential parameters: the Core to Copper Loss Ratio (γ) and the Window Utilization Factor (ku) for the inductor design process. The
loss models of the inductor are formulated based on these variables, considering the impact of DC bias, a crucial factor that significantly
affects the inductor in high magnetic field strength applications. To minimize the overall magnetic loss, the PSO algorithm is applied. The
simulation results validate the effectiveness and rationality of the proposed magnetic models and optimization strategy. Therefore, this approach
provides an efficient and effective alternative to the traditional trial-and-error approach for designing and selecting magnetic cores for DC
power optimizers.
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1. Introduction

In recent years, there has been an increasing interest in photo-
voltaic (PV) energy as a potential alternative energy source that
can reduce carbon emissions and provide a sustainable energy
supply [1]. The conversion of PV power to the grid requires
the use of a power converter to optimize energy efficiency and
ensure that the output voltage and current meet grid require-
ments [2]. One of the most commonly used power converters in
PV applications is the boost converter topology [3]. This DC-
DC converter can increase the voltage of a DC input to a higher
level, making it useful in PV applications where it can increase
the low DC voltage output of a solar panel to a level suitable
for feeding into the grid [2]. By applying maximum power
point tracking algorithms (MPPT), the boost converter can also
transfer maximum energy from the PV module to the inverter
stage, making it a DC optimizer or DC power optimizer.
Designing a DC optimizer for a PV system poses several chal-
lenges due to the unique characteristics of the PV source and
the grid connection requirements, such as variable and unpre-
dictable input voltage, MPPT algorithms, thermal management,
and magnetics design, among others, [2], [4]. The magnetic de-
sign of the DC optimizer is critical to its optimal performance.
The design of magnetic components, such as the inductor and
transformer, determines the efficiency and reliability of the
converter [4]. Proper magnetic design can lead to higher effi-
ciency, lower power losses, and reduced component size and

weight. However, the magnetic design process is complex and
requires an understanding of various parameters and trade-offs.
Several magnetics design methodologies have been published
in the literature, providing design guidelines for creating mag-
netic components based on fundamental concepts [5–7]. Typi-
cally, these guidelines suggest a step-by-step process that in-
cludes core selection, conductor selection, loss evaluation,
and other parameter estimation. However, the core selection is
typically based only on an appropriate Area-Product (Ap) pa-
rameter, which is independent of the converter’s performance.
Therefore, it requires repeating the process multiple times to
achieve an optimal design. In [8], the author used observation
and approximation methods to show the relationship between
Ap and the total loss of magnetic components. However, the
process still involves trial and error to obtain good results. To
address this issue, report [9] used the 3D-graphical method
for surveying and selecting a suitable design. However, these
methods have not considered the effect of DC bias, which can
significantly affect the final design. In PV applications, the
boost converter operates with low voltage and high current,
making this impact more significant.
This paper proposes a new approach to inductor design for a
DC power optimizer. The winding loss (Pcu) and ferrite loss
(Pf e) are formulated in terms of Ap. To enhance accuracy, the
effect of DC bias is also addressed in modeling the inductor
loss. The PSO algorithm is employed to find the optimal de-
sign. Inequality constraints were considered in the optimization
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Figure 1: DC Power Optimizer

problem due to factors such as the limited window area of the
inductor and the need to handle the operating temperature. The
optimized inductor was then verified by finite element method
magnetic (FEMM) analysis. Simulation results demonstrate
that the loss models of the inductor are reliable.

2. Magnetic Circuit Analysis

2.1. Inductance Analysis

Fig. 1 showed the boost converter topology in PV application,
the inductor of which is used to illustrate the design process.
The inductance value can be calculated by the following equa-
tion (1) [3]:

L0 =
Vmpp ·D

fsw∆I
(1)

where Vmpp is the input voltage of the PV,
D is duty cycle,
∆I is the current ripple of the inductor,
fsw is the switching frequency.

While the inductance value is typically treated as constant
throughout circuit operation in designs [5–9], this assumption
is not entirely accurate due to the presence of DC bias ef-
fect. This phenomenon has a significant impact on inductance
value, causing a shift in its frequency response and increasing
core losses [10]. This effect causes a mismatch between the
designed and actual performance of the inductor, leading to
degraded overall system performance. This effect is even more
significant in applications with high DC current such as DC
power optimizers.
Figure 2 provides an example illustrating how the permeability
and the inductance value decrease due to the occurrence of
DC bias. It is evident that the inductance value significantly
decreases under DC bias, hence in this paper, the inductance
value is recalculated based on the operating point of the circuit
as the following equation (2):

Lb = L0 · kb (2)

where Lb is recalculated inductance value; kb is the DC bias
gain which depends on the magnetic core material. In this
paper, the magnetic core of Micrometal manufacture is used to
illustrate the design process. From [11], kb can be expressed

Figure 2: Percent of permeability vs DC Bias [11]

by the Equation (3):

kb =
1

1
a1 +b1Bc1

ac
+

1
d1Bace +

1
fsw

(3)

where a1,b1,c1,d1and e is the material coefficients; Bac is AC
flux density of magnetic core.

2.2. Core Parameters Formulation

The design of an inductor typically begins with selecting a
core [5–7]. An initial core selection is based on the core area
product (Ap) which is the product of Wa and Ac. The Ac and
Wa of the magnetic core are illustrated in Fig.3. The product of
them specifies the energy handling capability of the core and
is defined by equation (4):

Ap =Wa ×Ac =
2(Energy)(104)

BmJku
(4)

where Bm is the maxinmum flux density; J is current density;
ku is window utilization factor.
In [5–7], by selecting Bm,J and ku, the initial parameters of Ap
can be determined. Subsequently, the number of turns and type
of wire is calculated based on the design inductance value,
followed by the assessment of losses and temperature rise.
However, this process does not take into account the impact
of DC bias as analyzed in Section 2.1. Additionally, numerous
trial and error iterations are typically required to arrive at the
final design, while ensuring that parameters such as losses and
temperature rise meet the specified requirements.
To streamline the design process, this paper proposes a loss
model that accounts for the effect of DC bias and applies an
optimization algorithm to find out the inductor which has the
lowest loss. Computed-aided tools are employed to support the
design process, thereby reducing the workload of the designer
and resulting in a more accurate design.
The first step in this design process is to reformulate Ap re-
lated to magnetic mechanical, electromagnetic, and power dis-
sipation parameters. This relationship is described in [8] as
following equation (5):

AP =

[√
1+ γKiLbImax

BmKt
√

ku∆T

] 8
7

(5)
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Figure 3: Magnetic core illustration.

where γ = Pf e/Pcu is core to copper loss ratio,
Ki is root-mean-square to maximum inductor current ratio,
Lb is the inductance value calculated in 2,
Kt is a dimensional constant,
∆T is the temperature rise of the inductor.

The key characteristics and physical measurements of the core,
including Wa, Ac, core volume (Vc), the mean length turn
(MLT), the magnetic path length of the core (le), winding vol-
ume (Vw) and total surface area (At ), can be determined based
on the value of Ap using dimensional analysis, as explained
in the references [8, 12]. In order to simplify the number of
unknown factors, [9] introduced a ratio of Wa to Ac, which can
be expressed by the following equation (6):

x =
Wa

Ac
(6)

Therefore, the values of Wa, Ac, Vc, and le that correspond
to each Ap value can be calculated by using the equations
described in (7):

Wa =
√

Ap × x

Ac =

√
Ap

x
Vc = kc ×A

3
4
p

le =
Vc

Ac

(7)

where kc depends on geometry and the manufacture; kc = 5.6
with vertical core and k = 3.3 with toroidal core typically [8].
Then the current density (J) within the winding needs to meet
the maximum allowable temperature and can be expressed in
terms of ku,γ,∆T and Ap as the following equation (8):

J = Kt

√
∆T√

ku(1+ γ) B
√

AP
(8)

Next, it is possible to calculate the inductance value in terms
of the number of turns (N) and core reluctance (ℜ):

L =
N2

ℜcore
(9)

where N and Re can be calculated by (10) and (11):

N =
kuWa

Aw
(10)

Re =
le

µµrAc
(11)

2.3. Loss Formulation

Inductor loss includes ferrite loss on the magnetic core and
copper loss dissipating on windings as follows by equation
(12):

∆Pind = Pf e +Pcu (12)

From [11] the core loss can be estimated by the following
equation (13):

Pf e =Vc ·

 fsw
a2
B3

ac
+ b2

B2.3
ac

+ c2
B1.65

ac

+d2 ·B2
ac · f 2

sw

 (13)

where a2,b2,c2,d2 is core loss coefficients
Subtituting (7) to (13), Pf e can be calculated in terms of Ap,
by following equation (14):

Pf e = kc ×A
3
4
p ·

 fsw
a2
B3

ac
+ b2

B2.3
ac

+ c2
B1.65

ac

+d2 ·B2
ac · f 2

sw

 (14)

The basic formula of the copper loss can be expressed as the
following equation (15):

Pcu = RdcI2
rms (15)

Apply approximation methods, [9] reports a calculation of the
copper loss in terms of Ap,ku and J as following equation (16):

Pcu = kw ·A
3
4
p ×ρw × ku × J2 (16)

where ρw is the resistivity of copper winding; ρw = 1.68×
10−8, kw depends on types of cores, kw = 8 with toroidal core.

3. Design Method

3.1. Design Constraints

The overall power dissipation of the inductor should be mini-
mized in order to maximize system efficiency. The inductor is
dropped by the DC bias as described in Section 2 for a given
input parameters (Vmpp,Prate,Bm,∆T ), the tuning parameters
are γ , ku and x. Then, some additional constraints are applied
to optimize the design.
The first physical constraint is to limit the winding current
density in order to prevent overheating and damage to the
material or conductor. High current densities can result in an
increase in temperature, which can lead to thermal expansion,
changes in material properties, and even melting or breakdown
of the material [13], as shown in (17):

Jmin < J < Jmax (17)

Next the inductance value (L) in (9) needs to be limited to
obtain the design requirement given by (18):

L ≤ L0 ±5% (18)
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Then the inductance value at peak current should not decrease
more than 30% from the initial value, this inductance value is
limited by (19):

Lb ≥ 70%×L (19)

The window utilization factor (ku) needs to be limited to avoid
magnetic saturation of the core, which can result in increasing
loss of the inductor and an increase in winding resistance,
leading to decreased efficiency and potential damage to the
inductor [6], which should be restricted by (20):

kumin ≤ ku ≤ kumax (20)

The ratio of core loss to copper loss (γ) in an inductor is an
important consideration for the efficient design of the inductor.
The range of this ratio needs to be limited by (21):

γmin ≤ γ ≤ γmin (21)

Finally, the range of Wa to Ac ratio (x) is also considered be-
cause of the core geometry reality. By comparing several core
options, it was found that this ratio typically varies between 2
and 6 [9] and is shown in (22):

xmin ≤ x ≤ xmax (22)

3.2. Objective Function

The primary purpose of this study is to design a lowest-lost
inductor. Therefore, the objective function is to minimize the
inductor loss. The equation (23) derives the objective function
equation from this study:

f (γ,ku,x) = ∆Pind → min (23)

Minimization of f must meet the predetermined constraints
as described in Section 3.1. Equations (24) contain constraints
that must be appropriate in this inductor design:

c1(γ,ku,x) = J− Jmax ≤ 0
c2(γ,ku,x) = Jmin − J ≤ 0
c3(γ,ku,x) = L−L0 · (1+5%)≤ 0
c4(γ,ku,x) = L0 · (1−5%)−L ≤ 0
c5(γ,ku,x) = 70%×L−Lb ≤ 0
c6(γ,ku,x) = ku − ku,max ≤ 0
c7(γ,ku,x) = ku,min − ku ≤ 0
c8(γ,ku,x) = γmin − γ ≤ 0
c9(γ,ku,x) = γ − γmax ≤ 0
c10(γ,ku,x) = xu,min − x ≤ 0
c11(γ,ku,x) = x− xmax ≤ 0

(24)

Table 1 is a type of optimized design variables along with its
lower and upper bounds.
There are numerous methods that can be employed to address
the optimization challenges highlighted earlier. However, it is
important to note that the optimization function in question in-
volves a round-up or ceiling function, which renders it discon-
tinuous and non-differentiable at that point. As a result, the use
of explicit gradient-based techniques is not viable, and alterna-
tive approaches are required. One such alternative approach is

Table 1: Lower and upper bounds for genetic algorithm

Parameter Symbol Lower Bound Upper Bound
Current density J 1 A/mm2 9 A/mm2

Window utilization factor ku 0.05 1
Core to copper loss ratio γ 0.5 5

Wa to Ac ratio x 2 6

Start
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particle fitness
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particle (pbest)
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Finish

Figure 4: The flowchart of the PSO model

the use of heuristic techniques like the genetic algorithm (GA),
differential evolution (DE), and particle swarm optimization
(PSO), among others, as they can effectively tackle problems
that are not amenable to gradient-based techniques [14]. In
this particular study, the PSO approach was adopted due to
its simplicity, ease of implementation, and feasibility for the
problem at hand.

3.3. Principle of Particle Swarm Optimization

PSO is an optimization search algorithm based on swarm be-
havior. PSO is an algorithm based on population, exploiting
the population to find potential solutions in the search space.
The population is called a swarm, and the individual is called
a particle [15].

S = {x1,x2,x3, . . . ,xN} (25)

xi = (xi1,xi2,xi3, . . . ,xiN)
T ∈ A (26)

The objective function is assumed to be available for all points
in space A, and the particles move in search space A with ve-
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Table 2: The PSO parameters.

Parameter Value
Number of particles 250

Number of optimized variables 3
Number of the maximum iteration 30

Cognitive parameter 3
Social parameter 3

Table 3: Specification parameters

Parameter Symbol Value Unit
Rated Power Prate 550 W
MPP Voltage Vmpp 45 V

Switching Frequency fsw 30 kHz
Inductance Value L 120 µH
Peak Flux Density Bm 500 mT
Temperature rise ∆T 40 ◦C

locity vi. The velocity and position of each particle are updated
interactively to allow the particle to find any point in space A.

vi = (vi1,vi2,vi3, . . . ,viN)
T i = 1,2,. . . ,N (27)

The equations provided in (28) and (29) are the velocity and
position update equations for each particle. The velocity update
equation in (28) takes into account the best position (pi j) the
particle has ever obtained and the particle’s current position
(xi j). The cognitive parameter (c1) and social parameter (c2)
weigh the influence of the particle’s current position and the
best position the particle has ever obtained, respectively. The
random variables R1 and R2 add stochasticity to the velocity
update equation (28):

vi j(t +1) = vi j(t)+ c1R1(pi j(t)− xi j(t))+ c2R2(pi j(t)

−xi j(t))
(28)

xi j(t +1) = xi j(t)+ vi j(t +1) (29)

After updating and evaluating the particles in each iteration, the
best position of the particles will be updated. This algorithm
has advantages such as a simple program, high-quality solution,
and fast convergence [15]. Figure 4 helps to visualize the flow
of the PSO algorithm.

3.4. Case Study

This design is applied to the boost DC optimizer circuit, with
the specifications shown in Table 3. The constraints are used
based on Equation (24), and the lower bounds and upper
bounds of each optimized design variables are presented in
Table 1. In contrast, the PSO parameters are shown in Table 2.
The flowchart of the entire design process is described in Fig.5.
The design problem is initialed by specifying the rated power
(Prate) and input voltage of the converter (Vmpp). Subsequently,
preliminary parameters such as the switching frequency, the
maximum flux density, the desired temperature, and the in-
ductance value are pre-selected. From the design’s core type
and material, the core’s characteristic parameters are extracted
to establish the loss model for the inductor. The constraints
of parameters are provided to ensure the design’s feasibility

Y

begin

Given 𝑉𝑚𝑝𝑝, 𝑃𝑟𝑎𝑡𝑒  
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Calculate other design 
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end

Select a suitable part 
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Exist satisfied 
core & wire?

N

Figure 5: Design Process

and practicality. The loss model and the parameter constraints
are the inputs into the PSO algorithm to obtain the value of
γ,ku and x. The satisfied core size and winding wire are then
derived from these values. The design process terminates when
the combination of a core and winding wire that satisfies the
design output is identified. Otherwise, the preliminary pa-
rameters or core type need to be re-evaluated and modified.
This iterative process continues until the final outcome is the
inductor with the lowest total loss.

4. Results, Comparison and Discussion

4.1. Optimization Result

The results of the design process are displayed in Fig.6. The
x-axis of Fig.6a represents the number of iterations that the
PSO algorithm has run for, while the y-axis of this figure 6a
represents the fitness of the best individual in the population at
each iteration. The fitness of the best individual in the popula-
tion generally improves over time as the PSO algorithm runs
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Figure 6: PSO Algorithm Results:
(a) The objective function value (b) Optimization of positioning

Table 4: Calculated core parameters

Parameter Symbol Calculation Unit
Core to copper loss ratio γ 0.537
Window utilizing factor ku 0.251

Wa to Ac ratio x 4.01
Window area product Ap 4.263 cm4

Inductance at initial L0 127.94 µH
Inductance at peak current Lb 90.15 µH

Number of turns N 35 turns
Total loss Ptot 3.380 W
Core loss Pf e 1.202 W

Copper loss Pcu 2.178 W

and converges after about 30 iterations. These properties are
illustrated in Fig.6b which shows the 3D plot of the total loss
and the variables of a fitness function. It can be observed that
the cost of individuals in the 30th iteration is going forward
nearly on the point of the global best, which means the PSO
algorithm has found the optimal point.
The optimal fitness value, which corresponds to the minimum
inductor loss, is achieved at 3.380 W for a particular set of
parameters (γ,ku,x) with values of (0.537, 0.251, 4.01). Table
4 shows other important parameters. The core MS-157075-2
of Micrometal manufacture and AWG 12 wire are selected to
match the above parameters.

4.2. Comparison

The comparison of proposed results is necessary to indicate
the differences between the conventional Ap method and the
given optimal method. The Ap method is illustrated clearly in

Chapter 9 in [6] with some suggesting parameters; typically,
the current density, the flux density, and the temperature rise
are selected by 400 A/cm2, 0.5 T, and 40 oC, respectively.
Hence, the selection of core and wire is conducted through
the Ap value and Aw value. After calculating the Ap value of
approximately 3.2 and the Aw value of roughly 0.03, the core
MS-134075-2 and the AWG 13 are determined. Consequently,
the comparison is indicated in the table 5 and Fig.7. The results
show total loss of the traditional Ap method is more than the
optimal method by approximately 11.9 %, which proves the
efficiency of the given approach.

Table 5: Comparison of the given method and the proposed method.

Parameter The conventional
method

The given
method

Inductance at intial current 124.97 µH 127.94 µH
Inductance at peak current 76.96 µH 90.15 µH

Total loss 3.782 W 3.38 W

Figure 7: The losses of proposed method and conventional method

4.3. Simulation Results

To validate the designed inductors, a finite-element analysis
(FEA) was conducted using the ANSYS Maxwell version 18.0.
The FEA results indicated that the flux density within the
inductors exhibited a higher density towards the inner edge of
the core, while the outer edge had a lower density, as depicted in
Fig. 8. This phenomenon can be attributed to the flux seeking
the shortest path to flow. The peak flux density was observed to
be 562 mT, which satisfied the saturation condition. However,
this value exceeded the designed value of 500 mT by 12%.
This can be explained by the non-uniform distribution of flux
within the magnetic core. While the design value assumes a
uniform flux distribution throughout the magnetic core, it is
evident that the inside of the inductor has a higher flux density,
whereas the edge of the core has a lower flux density than the
design value.

Table 6: Calculation and simulation parameters

Parameter Symbol Calculation Simulation
Inductance at initial L0 127.94 µH 128.32 µH

Inductance at peak current Lb 90.15 µH 93.20 µH
Core loss Pf e 1.202 W 1.26 W

Copper loss Pcu 2.178 W 2.19 W
Peak flux density Bm 500 mT 562 mT
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Figure 8: Simulation results with ANSYS Maxwell

Other key parameters, such as the inductance, copper and fer-
rite losses, were found to be almost identical to the designed
values. The comparison between the calculated and simulated
values is shown in Table 6. As demonstrated in this table, the
calculation parameters matched FEA results very well, with
the simulated inductance value of 127.94 µH differing only
0.3% from the expected value of 128.32 µH. Moreover, the
inductance value at peak current was observed to decrease to
72.6%, satisfying the DC bias constraint specified in Section
3.1. The prediction of inductor loss was also found to be close
to the FEA simulation results. Thus, based on these outcomes,
it can be confirmed that the magnetic models and optimization
strategy presented in the previous sections are reasonable.

5. Conclusion

This study proposes a novel methodology for designing and
selecting magnetic cores for DC power optimizers, which di-
verges from the traditional approach that relies on the Area
Product (Ap) and requires multiple trial-and-error attempts to
arrive at the final design. The proposed approach employs two
critical starting parameters, namely the Core to DC Copper
Loss Ratio (γ) and the Window Utilization Factor (ku), for
the inductor design process. Furthermore, to account for the
significant impact of DC bias on the inductor in high magnetic
field strength applications, the inductor’s loss model are for-
mulated using these variables. The PSO algorithm is utilized
to minimize the overall magnetic loss. The simulation results
validate that the magnetic models and optimization strategy
presented in this study are rational and highly effective. There-
fore, this methodology offers a more efficient and effective
approach for designing and selecting magnetic cores for DC
power optimizers than the traditional trial-and-error approach.
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