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Abstract 
 

Gantry cranes are widely employed in various industries, including manufacturing and transportation. However, when used, 

the crane causes undesired cargo vibration, making it difficult to operate and  workplace safety. Numerous crane control systems 

exist, but most are rather complex in controller design and practical implementation. Because of its ease of tuning, quick 

reaction, and robustness against changing process parameters, Active Disturbance Rejection Control (ADRC) is a viable 

alternative to standard Proportional-Integral-Derivative (PID) controllers. However, in many flexible systems, ADRC 

controllers have little ability to decrease residual oscillation. The input shaping method, a commonly used feedforward control 

strategy for vibration suppression, can be implemented to address this issue. This paper proposed a hybrid controller that 

combines ADRC with input shaping to achieve accurate position control, low residual oscillation in the crane system. The 

condition of the controller parameter is given to ensure the input signal limits. 
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1. Introduction 

This article discusses the challenges of operating crane 

systems, with a focus on controlling position and suppressing 

residual oscillations. Due to vibrations and residual 

oscillations, these systems often have significant response 

times, making it essential to develop effective control 

methods. Traditional closed-loop control methods have 

limitations, including difficulty identifying specific noise 

components and accurate modeling. They also require high-

precision sensors and accurate object models, making them 

less suitable for crane systems. 

In contrast, open-loop feedforward control methods are more 

commonly used and effective in controlling and suppressing 

residual oscillations. These methods do not rely on precise 

sensors or accurate object models, making them more 

practical for crane systems. Over the past decades, various 

vibration suppression control approaches have been studied, 

including open-loop control (input shaping [1], hybrid control 

[2]), closed-loop control (linear control, optimal control, 

adaptive control [3]) , and intelligent control (fuzzy control, 

neural networks, genetic algorithms [4]. 

In recent years, Active Disturbance Rejection Control 

(ADRC) has been considered to replace the traditional PID 

controller. The concept of ADRC was proposed by J. Han[5], 

but only became explicit for the application of this method 

since a controller parameter tuning method was proposed in 

ADRC is a powerful control method in which system models 

are extended with a new state variable, including all unknown 

dynamics and disturbances. According to the studies [6,7], in 

crane control, the ADRC method is more effective than the 

PID control method in reducing the swing angle of the system, 

the ADRC method is also capable of compensating for 

nonlinear properties of the motor system such as dead-zone 

and input saturation. This makes it a more powerful and 

flexible control method than the PID controller, especially in 

applications with external disturbances. 

Previous studies have given limited consideration to the 

constraint of control signals. If they have utilized input-

shaping in conjunction with PID controllers, they have not 

addressed the ADRC controller. ADRC can estimate and 

suppress external disturbances while minimizing errors and 

improving control system performance. When combined with 

Input Shaping, ADRC becomes more effective in suppressing 

vibrations and improving performance. This article proposes 

combining ADRC and Input Shaping controllers to control the 
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crane position while suppressing residual oscillations with 

limited control signals. 

The article is organized as follows: Section 2 presents the 

mathematical model of the crane system. Section 3 discusses 

the design of position control and vibration suppression using 

ADRC and input shaping. Simulation results are described in 

Section 4 to demonstrate the effectiveness of the proposed 

approach. Section 5 concludes the article by summarizing key 

findings and potential future research directions. 

2. Dynamic model of Crane system 

Considering the model of an overhead crane system moving 

horizontally along the X- axis, with a payload hanging below 

along the Y-axis as shown in Figure 1, where: 

- x: position of the trolley along the X-axis 

- l: length of the hoisting cable 

- 𝜃 : sway angle 

- 𝑚𝑝: mass of the trolley 

- 𝑚𝑡: mass of the payload 

 

Figure 1: An overhead crane system 

Basically, both the trolley and the payload are considered as 

point masses, and the friction between the trolley and the rail 

is neglected. Suppose that the tension force that will cause the 

hoisting cable to elongate is neglected, the equations for the 

gantry crane model are:  

(𝑚𝑡 +𝑚𝑝)𝑥̈ + 𝑚𝑝𝑙𝜃̈ cos 𝜃 − 𝑚𝑝𝑙𝜃̇
2 sin 𝜃

= 𝐹𝑥  −  𝐵𝑒𝑞𝑥̇ 

(1) 

𝑙𝜃̈ + 𝑥̈ 𝑐𝑜𝑠 𝜃 + 𝑔 𝑠𝑖𝑛 𝜃 = −𝐵𝑝𝜃̇   

 

(2) 

where:  

𝐹𝑥 : the force drives the system 

𝐵𝑒𝑞  : the viscosity index 

𝐵𝑝 : the damping coefficient 

 

From equation (1), one has the form: 

𝑥̈ =
−𝑚𝑝

𝑚𝑝 +𝑚𝑡

[(𝑙𝜃̈ 𝑐𝑜𝑠 𝜃 − 𝑙𝜃̇2 𝑠𝑖𝑛 𝜃) − 𝐵𝑒𝑞𝑥̇] +
𝐹𝑥

𝑚𝑝 +𝑚𝑡

 

In practice, the trolley is moved by using a motor and motor 

driver, allowing for precise speed control even in the presence 

of disturbances. As a result, it is reasonable to assume that the 

trolley velocity can be managed by adjusting the input 

voltage. The transfer function for the trolley position in 

response to a control voltage input can be consider as [8]: 

            𝐺𝑃 =
𝑋(𝑠)

𝑈(𝑠)
=

𝐾

(𝑇𝑠+1)𝑠
  

 (3) 

where 𝐾 > 0, 𝑇 > 0 

From equation (2), when the angle of oscillation is small, 

𝑐𝑜𝑠𝜃 ≈ 1, 𝑠𝑖𝑛𝜃 ≈ 𝜃, we consider that there is a transfer 

function between the angle of oscillation and the position:  

             
𝜃(𝑠)

𝑋(𝑠)
=

−𝑠2

𝑙𝑠2+𝐵𝑝𝑠+𝑔
  

 (4) 

where: 𝐵𝑝 = 2𝜉√𝑔𝑙 and 𝜉 is the damping coefficient. 

3. Control system design 

In this paper, we proposed  the combination of ADRC with 2-

pulse input shaping (called ZV shaper) to control crane, where 

ADRC controls the trolley position and the ZV Shaper is 

responsible for reducing oscillations and suppressing residual 

oscillations of the payload. 

This control structure is shown in Figure 2 where ADRC 

controls the crane position and the ZV Shaper is responsible 

for reducing oscillations and suppressing residual oscillations 

of the payload. 

 

Figure 2: Control System Structure 

3.1. Input Shaping 

Input shaping is an input filter used to eliminate residual 

oscillations of the system. The idea of this technique is to 

eliminate the response of the previous pulse by issuing 

subsequent pulses at an appropriate time with an appropriate 

magnitude. At this point, the response of the subsequent pulse 

will eliminate part of the response of the previous pulse. So, 

until the last pulse is applied, the residual oscillation of the 

system will be eliminated.  

Consider an oscillating system represented as a second-order 

function as follows: 

𝑋(𝑠)

𝐹(𝑠)
=

 𝜔0
2

𝑠2 + 2𝜉𝜔0𝑠 + 𝜔0
2
 

 

(5) 

where:  
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𝜔0 : the natural frequency of the system 

𝜉 : the damping ratio 

If an input pulse with magnitude A1 is applied to the system at 

time t1, then the output response y(t) is determined: 

𝑦(𝑡) = 𝐵1. 𝑠𝑖𝑛(𝜔. 𝑡 + 𝜃1) (6) 

where:  

𝐵1 = 𝐴1.
𝜔0

√1−𝜉2
𝑒−𝜉𝜔(𝑡−𝑡1), 

 𝜔 = 𝜔0√1 − 𝜉
2 , and     𝜃1 = 𝜔0√1 − 𝜉

2t1 

As mentioned above, after the first pulse has been emitted, we 

emit a second pulse; the output response of the two pulses is 

calculated as follows: 

       y(t)=B1. sin(ω.t+ θ1)+B2. sin(ω.t+ θ2)  (7) 

Trigonometric transformation obtained: 

𝑦(𝑡) = 𝐵0. sin(𝜔. 𝑡 + 𝜃0) (8) 

with:  

 𝐵0 = √(𝐵1. 𝑠𝑖𝑛𝜃1 + 𝐵2. 𝑠𝑖𝑛𝜃2)
2 + (𝐵1. 𝑐𝑜𝑠𝜃1 + 𝐵2. 𝑐𝑜𝑠𝜃2)

2 

𝜃0 = 𝑡𝑎𝑛
−1(

𝐵1.𝑠𝑖𝑛𝜃1 +  𝐵2.𝑠𝑖𝑛𝜃2

𝐵1.𝑐𝑜𝑠𝜃1 +  𝐵2.𝑐𝑜𝑠𝜃2
)

  

In the general case, if we apply N pulses to amplitude Ai at 

time ti (i=1,......, N), then the response of N pulses is 

determined by:  

𝑦(𝑡) = ∑ 𝑦𝑖(𝑡)
𝑁

𝑖=1
∑ 𝐵𝑖 . 𝑠𝑖𝑛(𝜔. 𝑡 + 𝜃𝑖)

𝑁

𝑖=1
 (9) 

with: 

 𝐵 = √(∑ 𝐵𝑖 . 𝑠𝑖𝑛(𝜃𝑖)
𝑁

𝑖=1
)
2

+ (∑ 𝐵𝑖 . 𝑐𝑜𝑠(𝜃𝑖)
𝑁

𝑖=1
)
2

 

𝜃 = 𝑡𝑎𝑛−1(
∑ 𝐵𝑖 . 𝑠𝑖𝑛(𝜃𝑖)
𝑁
𝑖=1

∑ 𝐵𝑖 . 𝑐𝑜𝑠(𝜃𝑖)
𝑁
𝑖=1

)

 

In this paper, the input shaping method is considered with 2-

pulse, called ZV (Zero Vibration) shaper, corresponding to 

𝑁 =  2, with magnitude 𝐴1 and 𝐴2 at time instant 𝑡1 and 𝑡2 

respectively, these parameters are determined as follows: 

{
 

 𝐴1 =
1

1 + 𝐾∗
,         𝑡1 = 0 

𝐴2 =
𝐾∗

1 + 𝐾∗
,         𝑡2 =

𝜋

𝜔𝑑
 
 (10) 

where: 

 𝐾∗ =  𝑒𝑥𝑝 (− 
𝜋𝜉

√1 − 𝜉2 
) ;  𝜔𝑑 = 𝜔0√1 − 𝜉

2   

3.2. ADRC for trolley position control 

To construct the ADRC controller for the trolley position 

control, transform equation (3) into the form: 

𝑥̈ = 𝑓 + 𝑏0. 𝑢 (11) 

with: 

𝑓(𝑡) =
−1

𝑇
𝑥̇ 𝑎𝑛𝑑 𝑏0 =

𝐾

𝑇
 

An Extended State Observer (ESO) is constructed to estimate 

the value of 𝑓, thereby compensating for the impact of 𝑓 on 

the model using disturbance rejection method. The extended 

observer is designed in the form of: 

{

𝑥̇̂1(𝑡) = 𝑥̂2(𝑡) + 𝑙1(𝑦(𝑡) − 𝑥̂1(𝑡))

𝑥̇̂2(𝑡) = 𝑥̂3(𝑡) + 𝑏0. 𝑢(𝑡) + 𝑙2(𝑦(𝑡) − 𝑥̂1(𝑡))

𝑥̇̂3(𝑡) = 𝑙3(𝑦(𝑡) − 𝑥̂1(𝑡))

 (12) 

where, 𝑙1, 𝑙2, 𝑙3 are observer parameters to be determined such 

that 𝑥̂1, 𝑥̂2, 𝑥̂3 will track 𝑥, 𝑥,̇ 𝑓.  

Then, with the control law of the form: 𝑢 = (𝑢0 − 𝑥̂3)/𝑏0 

Equation (9) will be converted to the form of two simple 

integration stages: 

𝑥̈(𝑡) = 𝑢0 (13) 

One of the simple proposed ways to choose a control law is to 

choose: 

𝑢0 = 𝐾𝑃(𝑟 − 𝑥̂1) − 𝐾𝐷 . 𝑥̂2 (14) 

Substituting (14) into (13):  

            𝑥̈(𝑡) = 𝐾𝑃(𝑟(𝑡) − 𝑥(𝑡)) − 𝐾𝐷 . 𝑥̇(𝑡) (15) 

The closed-loop transfer function of the position control loop 

is then: 

                 𝐺𝑐𝑙(𝑠) =
𝑋(𝑠)

𝑅(𝑠)
=

𝐾𝑃

𝑠2+𝐾𝐷𝑠+𝐾𝑃
 (16) 

where 𝐾𝑃 and 𝐾𝐷 are the parameters of the controller.  

 

Figure 3: ADRC for a second-order plant 

These parameters, along with the parameters of the extended 

observer, can be selected according to the method proposed 

by [9], where 𝑇𝑠𝑒𝑡  is the desired settling time of the closed-

loop response. 

{
 
 

 
 𝐾𝑃 = (𝑠𝐶𝐿)2, 𝐾𝐷 = −2𝑠

𝐶𝐿 ,

𝑙1 = −3. 𝑠
𝐸𝑆𝑂 , 𝑙2 = 3(𝑠

𝐸𝑆𝑂)2, 𝑙3 = (𝑠
𝐸𝑆𝑂)3

𝑠𝐶𝐿 ≈ −
5.85

𝑇𝑠𝑒𝑡
, 𝑠𝐸𝑆𝑂 = (3…10)𝑠𝐶𝐿

 

 

(17) 
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where  

𝑠𝐶𝐿  : the closed loop pole 

𝑠𝐸𝑆𝑂  : the observer pole 

Then the transfer function of the closed-loop position control 

loop: 

                     𝐺𝑐𝑙(𝑠) =
𝑋(𝑠)

𝑅(𝑠)
=

(𝑠𝐶𝐿)2

(𝑠−𝑠𝐶𝐿)2
 

(18) 

 

3.3. Control signal examination 

In this article, we consider the case that the control signal is 

limited to a certain range of values, that is: 

𝑉𝑚𝑖𝑛 ≤ 𝑢(𝑡) ≤ 𝑉𝑚𝑎𝑥  (19) 

This condition will lead to some constraints on the parameter 

of the controller. 

 

3.3.1. In the case without ZV shaper 

Let 𝑎 = −𝑠𝐶𝐿(𝑎 > 0), equation (18) takes the form: 

𝐺𝑐𝑙(𝑠) =
𝑋(𝑠)

𝑅(𝑠)
=

𝑎2

(𝑠 + 𝑎)2
 (20) 

The transfer function of the controller output response can be 

obtained through:  

𝑈(𝑠)

𝑅(𝑠)
=
𝑈(𝑠)

𝑋(𝑠)
.
𝑋(𝑠)

𝑅(𝑠)
=

1

𝑋(𝑠)
𝑈(𝑠)

. 𝐺𝑐𝑙(𝑠) 

 

(21) 

with  
𝑋(𝑠)

𝑈(𝑠)
 is the transfer function between the position output 

and control signal, 
𝑋(𝑠)

𝑅(𝑠)
 is the closed – loop transfer function 

of the trolley position control.  

Let 𝑟(𝑡) = 𝐿𝛿(𝑡), (𝐿 > 0) or 𝑅(𝑠) =
𝐿

𝑠
 then:  

𝑈(𝑠) =
𝑅(𝑠)

𝑋(𝑠)
𝑈(𝑠)

.
𝑋(𝑠)

𝑅(𝑠)
= 𝐿.

(𝑇𝑠 + 1)

𝐾
.

𝑎2

(𝑠 + 𝑎)2
 

 (22) 

Taking the inverse Laplace transform of U(s): 

𝑢(𝑡) =
𝐿. 𝑎2

𝐾
. [𝑇. 𝑒−𝑎𝑡 − (𝑇. 𝑎 − 1). 𝑡. 𝑒−𝑎𝑡] 

 

(23) 

To find local maximum/minimum of u(t), we solve following 

equation: 

 𝑢′(𝑡) =
𝐿. 𝑎2

𝐾
. 𝑒−𝑎𝑡[1 − 2. 𝑎. 𝑇 + 𝑎. (𝑎. 𝑇 − 1)𝑡] = 0 

 
(24) 

The local maximum/minimum of u(t) is determined at the 

time 

𝑡𝑚 =
2𝑎𝑇 − 1

𝑎(𝑎𝑇 − 1)
 

Then:                  u(𝑡𝑚) =
𝐿.𝑎

𝐾
. (1 − 𝑎𝑇). 𝑒

1−2𝑎𝑇

𝑎𝑇−1  (25) 

Case 1: if 𝑎 ∈ (0;
1

2𝑇
] 

Then 𝑡𝑚 > 0 and  {
 𝑢′(𝑡) > 0 𝑤ℎ𝑒𝑛 0 < 𝑡 < 𝑡𝑚

 𝑢′(𝑡) < 0 𝑤ℎ𝑒𝑛 𝑡𝑚 < 𝑡 < ∞
 

From equation (25): 

 𝑢(𝑡𝑚) =
𝐿.𝑎

𝐾
. (1 − 𝑎𝑇). 𝑒

1−2𝑎𝑇

𝑎𝑇−1 = 𝑢(𝑡)𝑚𝑎𝑥  

 
(26) 

Combined with the limit condition (19), the following 

condition must be satisfied:  

0 < 𝑢(𝑡)𝑚𝑎𝑥 =
𝐿. 𝑎

𝐾
. (1 − 𝑎𝑇). 𝑒

1−2𝑎𝑇
𝑎𝑇−1 ≤ 𝑉𝑚𝑎𝑥  (27) 

 

Case 2: if 𝑎 ∈ (
1

𝑇
; +∞) 

Then 𝑡𝑚 > 0 and {
 𝑢′(𝑡) < 0 𝑤ℎ𝑒𝑛 0 < 𝑡 < 𝑡𝑚

 𝑢′(𝑡) > 0 𝑤ℎ𝑒𝑛 𝑡𝑚 < 𝑡 < ∞
 

We have: 

𝑢(𝑡𝑚) =
𝐿. 𝑎

𝐾
. (1 − 𝑎𝑇). 𝑒

1−2𝑎𝑇
𝑎𝑇−1 = 𝑢(𝑡)𝑚𝑖𝑛 < 0 (28) 

The solution set of 𝑎 in this case is obtained with the following 

conditions: 

{
𝑢(0) =

𝐿. 𝑎2

𝐾
. 𝑇 ≤  𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛 ≤ 𝑢(𝑡)𝑚𝑖𝑛  =
𝐿. 𝑎

𝐾
. (1 − 𝑎𝑇). 𝑒

1−2𝑎𝑇
𝑎𝑇−1 < 0

 (29) 

Case 3: if 𝑎 ∈ (
1

2𝑇
;
1

𝑇
] 

In this case, 𝑡𝑚 < 0 and  𝑢′(𝑡) < 0 ∀𝑡 ≥ 0, thus obtaining the 

following conclusion: 

 𝑢(𝑡)𝑚𝑎𝑥 = 𝑢(0) =
𝐿. 𝑎2

𝐾
. 𝑇 ≤ 𝑉𝑚𝑎𝑥  (30) 

From conclusions (27), (29), and (30), we can derive a 

comprehensive result about the conditions for the value of 𝑎 

such that the condition in equation (19) is satisfied. It will 

belong to one of the following conditions: 

(I)  {
𝑎 ∈ (0;

1

2𝑇
]

𝐿.𝑎

𝐾
. (1 − 𝑎𝑇). 𝑒

1−2𝑎𝑇

𝑎𝑇−1 ≤ 𝑉𝑚𝑎𝑥  
 (31) 

(𝐼𝐼)

{
 
 

 
 𝑎 ∈ (

1

𝑇
;+∞)

𝐿. 𝑎2

𝐾
. 𝑇 ≤ 𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛 ≤
𝐿. 𝑎

𝐾
. (1 − 𝑎𝑇). 𝑒

1−2𝑎𝑇
𝑎𝑇−1 < 0

 (32) 

(𝐼𝐼𝐼) {
𝑎 ∈ (

1

2𝑇
;
1

𝑇
]

𝐿. 𝑎2

𝐾
. 𝑇 ≤ 𝑉𝑚𝑎𝑥  

 
(33) 
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3.3.2. In the case with ZV shaper 

The transfer function in the Laplace domain of two-pulse 

input shaping: 

𝐺𝑍𝑉 = 𝐴1 + 𝐴2. 𝑒
−𝑠𝜏 

𝐴1 + 𝐴2 = 1;     𝐴1, 𝐴2  > 0 
(34) 

In this case, the transfer function of the controller output 

response is obtained : 

𝑈(𝑠)𝑍𝑉 =
𝑅(𝑠)

𝑋(𝑠)
𝑈(𝑠)

. 𝐺𝐶𝐿 . 𝐺𝑍𝑉 

               =
𝐿.𝑎2

𝐾
. [𝐴1∙

𝑇𝑠+1

(𝑠+𝑎)2
+ 𝐴2 ∙

𝑇𝑠+1

(𝑠+𝑎)2
. 𝑒−𝑠𝜏]  

 

(35) 

Taking the inverse Laplace transform of 𝑈(𝑠)𝑍𝑉: 

𝑢(𝑡)𝑍𝑉 = 𝐴1. 𝑢(𝑡) + 𝐴2. 𝑢(𝑡 − 𝜏). ℎ(𝑡 − 𝜏) (36) 

with  {
ℎ(𝑡 − 𝜏) = 0 𝑤ℎ𝑒𝑛  0 ≤ 𝑡 < 𝜏

ℎ(𝑡 − 𝜏) = 1 𝑤ℎ𝑒𝑛  𝑡 ≥ 𝜏
 

Considering condition in (34), then from (36), It can be 

observed that in the case where the system has ZV shaper, it 

can always be proven that: 

 𝑢(𝑡)𝑍𝑉 < 𝑢(𝑡)𝑚𝑎𝑥 (∀𝑡 ≥ 0) (37) 

with 𝑢(𝑡)𝑚𝑎𝑥 being the maximum value of the control signal 

when the system input does not have ZV: 

Therefore, in this case, the equations (31) to (33) become 

sufficient conditions to calculate and select the value of a such 

that: 

𝑉𝑚𝑖𝑛 < 𝑢(𝑡)𝑍𝑉 < 𝑉𝑚𝑎𝑥  (38) 

4. Simulation Result 

In this section, we consider system in equation (3) with the 

𝐾 = 6.14 and 𝑇 = 0.04. Suppose that the desire trolley 

position is  𝐿 = 40𝑐𝑚 and the control signal is limited to a 

range of values [-10(V),10(V)].  

Table 1: The systems parameters 

Symbol Description Value 

𝐵𝑝 Equivalent viscous damping of 

crane seen from the rope axis. 

0(Ns/rad) 

𝜔0 System natural frequency  4.04(rad/s) 

l Rope length 0.6 (m) 

𝐴1 Magnitude of the first pulse 0.5 

𝐴2 Magnitude of the second pulse 0.5 

 𝑡1 Time instant of the first pulse 0 (s) 

 𝑡2 Time instant of the second pulse 0.776 (s) 

 

With the above system parameters, the value of a is only 

satisfied with the condition in case I (equation (31)), and the 

specific solution range of a is determined as follows: 

𝑎 ∈ (0; 4.1] (39) 

To verify the performance of proposed controller, we will 

examine several scenarios with 𝑎 =  1.4, 𝑎 = 2.2, 𝑎 = 4.2 

and 𝑎 = 15.  From Figure 4 to Figure 15, we have the results 

of the position response of the trolley, the sway angle of the 

load and the control signal in their respective cases. 

Scenario 1: 𝒂 = 𝟏. 𝟒   

ADRC parameters: 𝐾𝑃 = 𝑎
2 = 1.96,  𝐾𝐷 = 2𝑎 = 2.80 

 
Figure 4: Trolley position with a = 1.4 

 
Figure 5: Payload sway angle with a = 1.4 

 

Figure 6: Control input with a = 1.4 
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Scenario 2: 𝒂 = 𝟐. 𝟐 

ADRC parameters: 𝐾𝑃 = 𝑎
2 = 4.84, 𝐾𝐷 = 2𝑎 = 4.40 

 

Figure 7: Trolley position with a = 2.2 

 

Figure 8: Payload sway angle with a = 2.2 

 

Figure 9: Control voltage with a = 2.2 

Scenario 3: 𝒂 = 𝟒. 𝟐 

ADRC parameters: 𝐾𝑃 = 𝑎
2 = 17.64, 𝐾𝐷 = 2𝑎 = 8.4 

 

Figure 10: Trolley position with a = 4.2 

 

Figure 11: Payload sway angle with a = 4.2 

 

Figure 12: Control voltage with a = 4.2 
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Scenario 4: 𝒂 = 𝟏𝟓 

ADRC parameters: 𝐾𝑃 = 𝑎
2 = 225, 𝐾𝐷 = 2𝑎 = 30 

 
Figure 13: Trolley position with a = 15 

 
Figure 14: Payload's sway angle with a = 15 

 
Figure 15: Control voltage with a = 15 

These figures illustrate that as the value of parameter 𝑎 

increases, the position response time of the system improves 

but the sway angle of the load increases. The application of 

input shaping has been found effective in minimizing load 

oscillation. By selecting the values of 𝑎 using (39), the control 

signal 𝑢(𝑡) meets the limit condition both with and without 

input shaping. For 𝑎 = 4.2, the control signal exceeds the 

limit when input shaping is not considered, but it remains 

within the limit when an input shaping is added. This is 

because the conditions specified in equations (31) to (33) are 

only sufficient condition for the ZV-ADRC controller. In the 

case of 𝑎 = 15, the Figure 15 clearly indicates that the control 

signal exceeds the limit region. Table 2 summarizes some 

reference values for each control case. 

Table 2: Performance index 

a 1.4 2.2 4.2 15 

Residual 

vibration (°) 

ADRC 7.45° 16.37° 34.66° 14.35° 

ZV-ADRC 3.15° 5.73° 11.07° 14.35° 

Response 

time (s) 

ADRC 3.83 2.52 1.36 0.40 

ZV-ADRC 4.35 3.08 1.98 1.15 

Settling 

time (s) 

ADRC 5.05 4.13 2.49 0.76 

ZV-ADRC 6.08 4.76 3.15 1.51 

Actuator 

effort 

max (V) 

ADRC 3.27 5.02 10.15 57.26 

ZV-ADRC 2.90 4.01 5.93 29.06 

5. Conclusions 

In this study, we have proposed the idea of combining an input 

shaping called ZV shaper with ADRC controller to achieve 

position control and reduce residual oscillation of the crane 

system. Under the constraint of limited control signals, we 

have investigated the conditions for parameter computation of 

the ADRC controller. Through some simulation results, it has 

been shown that the proposed approach not only enables the 

system to achieve the desired position and mitigate residual 

oscillations but also ensures system stability during operation. 
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