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Abstract 
 
Distribution system operators inspect electrical components in the distribution systems to maintain the reliability of power supply. Results 
of the inspection and necessary actions for them have been accumulating in databases as the inspection and the maintenance records. The 
authors propose an estimation method of operating lifetime of newly constructed electrical components as an application of these records. 
The aim of this study is to utilize the inspection and the maintenance records to decision making in expansion planning of the distribution 
systems. In the proposed method, decision tree learning is applied to analyze relationships between initial information of the electrical 
components (sets of specifications and weather conditions) and their operating lifetime. The resulting tree-like model uses initial infor-
mation of the target component as input and estimates its operating lifetime. Numerical simulations are carried out for verifying the validity 
of the authors’ proposal using actual inspection and maintenance records accumulated in a Japanese electric power company. In addition, 
influential factors on the operating lifetime are specified through the numerical simulations and discussions on their results. 
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1. Introduction 

Electrical power distribution systems consist of distribution 
feeders, electric poles, pole transformers and switchgears, 
and have extremely important roles in delivering electrical 
power to the customers. Historically, the distribution feeders 
have been expanded radially from the distribution substa-
tions to supply power to spreading power consuming area 
[1]. If a trouble occurs in the distribution systems, the result-
ing power failure brings significant impacts on activities of 
our society. Therefore, to maintain the stable power supply, 
distribution systems’ operators (DSOs) make inspection for 
electrical components in the distribution systems sequential-
ly and decide necessary actions correlating with results of 
the inspection [2]. Conditions of the components and neces-
sary actions for them have been accumulated in databases of 
the DSOs through the inspection and its resulting mainte-
nance. 
Since the gathered information often includes useful rules, 
knowledge and judgement criteria [3], we can expect to im-
prove the reliability, the quality and the efficiency in opera-
tions and planning of the distribution systems by its appro-
priate applications [4,5]. However, records of the inspection 
and the maintenance have been only referred in the decision-
making process that the components require to be taken 
measures or not for keeping their functions [6]. This is be-
cause the total numbers of the distribution components are 
extremely large [1,7], and therefore, it is difficult to analyze 

and utilize these records relying on knowledge and experi-
ences of the DSOs. Under the circumstances, there is still 
plenty of room for discussion on how to utilize the massive 
records and what kinds of techniques are suitable for analyz-
ing and utilizing them [8,9]. 
This paper presents a way to utilize the inspection and the 
maintenance records in estimation of operating lifetime of 
newly constructed electrical components in the distribution 
systems. Here, the authors define the operating lifetime as 
the duration from the operation starting date to the date when 
the DSOs require ‘replacement’, that is available period of 
the target component. A decision tree learning is selected as 
the basis of the estimation method. During the learning pro-
cess, relationships between initially available information 
(sets of attributes of the electrical components and weather 
conditions) and operating lifetime are analyzed. In this pro-
cess, the operating lifetime of the target component is calcu-
lated by referring both of the inspection and the maintenance 
records. As a result of analysis, a tree-like estimation model 
is constructed. The constructed model can visually provide 
influential factors on the operating lifetime, and this is the 
strongest reason why the authors emphasize the decision tree 
learning algorithms. By input the initial information to the 
constructed model, we can estimate the operating lifetime of 
newly constructed electrical components. The aim of the 
proposed estimation method is to support decision making 
process of expansion or planning of the distribution systems. 
Through numerical simulations and discussions on their re-
sults, the validity of the authors’ proposal is verified. In the 
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numerical simulations, the inspection and the maintenance 
records accumulated in a Japanese electric power company 
are used. Influential factors on the operating lifetime are also 
specified as a result of the estimation model construction. 
Furthermore, as an improvement strategy of the proposed 
method, a random forest is applied as same as the decision 
tree learning and examined its performance. 

2. Estimation conditions 

In general, the DSOs make several decisions on the distribu-
tion system planning with the limited information. This is 
the reason why the authors focus on sets of the attributes of 
electrical components and the weather conditions, that are 
readily available information. The attributes of electrical 
components are roughly classified into specifications and 
locational conditions. For instance, in the concrete electric 
poles, “type” and “length” are included in the specification 
attributes, while “salt damage level” and “soil quality” are in 
the locational attributes. This section introduces overview of 
the initial information (input of the estimation process) and 
sets the average operating lifetime in the estimation target. 

2.1. Overview of initially available information  
(input data) 

Table 1 shows available electrical components and total 
numbers of each component. Although the authors applied 
the proposed method to these components individually, the 
concrete electric poles, which have the largest share in the 
available records as shown in Table 1, are emphasized in this 
paper. Table 2 summarizes breakdown of the concrete poles. 

Table 1: Total Numbers of Available Components. 

Concrete pole Pole transformer Switchgear 

1,382,067 1,056,191 95,776 

Table 2: Breakdown of Target Components (Concrete Electric Poles). 

Total number of all concrete poles 1,382,067 

Total number of concrete poles including missing data 
(removed from discussions) 

28,143 

Total number of concrete poles finishing their lifetime 
(available for model construction) 

4,951 

Total number of concrete poles having lifetime under 20 years 
(removed from discussions of this paper) 

266 

In the learning process, relationships between the attributes, 
the weather conditions and the actions for the inspection 
results, “follow-up observation”, “repair” or “replacement”, 
are analyzed. The attributes and the weather conditions are 
also used as the input in the estimation process.  
As summarized in Table 3, nine attributes and five weather 
conditions are used in this paper. The specification attributes 
consist of “type”, “length”, “with or without pole transform-
er”, “with or without switchgear” and “facility type” (SP 1-
5), while the locational attributes include “salt damage level”, 
“surrounding condition”, “geological condition” and “soil 
quality” (LC 1-4). The weather conditions are composed by 
“yearly precipitation”, “mean daily temperature”, “mean 
daily maximum temperature”, “mean daily minimum tem-

peratures” and “mean wind speed” (WC 1-5). In the inspec-
tion record, scores or actual values corresponding with each 
attribute are included. Since the proposed method is aiming 
to apply in the planning phases of distribution systems, the 
inspection results, that represent conditions of the target 
components, are removed from discussions in this paper. 
These results will be useful in the residual lifetime estima-
tion or the anomaly diagnosis. 

Table 3: Available Attributes and Weather Conditions. 

Input attributes Ellipsis Contents 

Type SP 1 Symbol A to Z 

Length SP 2 8 to 30 (m) 

Transformer (w or w/o) SP 3 1 (w) or 0 (w/o) 

Switchgear (w or w/o) SP 4 1 (w) or 0 (w/o) 

Facility type SP 5 Score of 1 to 4 

Salt damage level LC 1 Score of 1 to 3 

Surrounding condition LC 2 Score of 1 to 7 

Geological condition LC 3 Score of 1 to 3 

Soil quality LC 4 Score of 1 to 5 

Yearly precipitation WC 1 599.5 to 2,146.9 (mm) 

Mean daily temperature WC 2 13.3 to 17.7 (℃) 

Mean daily maximum temperature WC 3 17.5 to 21.9 (℃) 

Mean daily minimum temperature WC 4 8.7 to 14.1 (℃) 

Mean wind speed WC 5 1.3 to 4.3 (m/s) 

If we change the estimation target, five specification attrib-
utes (SP 1-5) are replaced with those of the other compo-
nents. 

2.2. Calculation of average lifetime 

With the aim of setting the standard of discussions, the aver-
age lifetime of concrete electric poles was calculated using 
the available records. As defined in Section 1, the operating 
lifetime in this paper is the available period of concrete poles, 
and therefore, it can be calculated by associating the opera-
tion starting date and the date when the DSOs described ‘re-
placement’. Although 4,951 concrete poles were available 
for the calculation, the authors regarded 266 concrete poles 
having too short operating lifetime (under 20 years) as the 
samples of irregular replacement, e.g. disaster-originated 
replacement. 
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Figure 1: Distribution of Operating Lifetime of Concrete Electric Poles. 

Figure 1 displays the distribution of operating lifetime of the 
concrete poles and their average lifetime. In this figure, the 
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average lifetime of the concrete poles was 40.8 years. In 
Japan, the average lifetime of concrete poles has been gener-
ally estimated in the range of 30 to 40 years by knowledge 
and experience of the DSOs. On the other hand, it is also 
well known to change the actual lifetime depending on vari-
ous factors [10,11]. From Fig. 1, we can confirm that the 
target concrete poles have slightly longer lifetime as com-
pared to the general average. 

3. Operating lifetime estimation 

There are various estimation models in machine learning 
techniques including multiple regression models, artificial 
neural networks and decision tree models [12-16]. In this 
paper, a decision tree model is selected as the basis of the 
operating lifetime estimation. Decision tree learning con-
structs a tree-like model representing its decisions and deci-
sion-making process visually and explicitly, and thus we can 
easily understand judgement criteria in the estimation as 
compared to the others. This section presents details of the 
decision tree-based estimation method. 

3.1. Overview of lifetime estimation 

The decision tree learning is a knowledge representation that 
ultimately makes decisions by accumulating questions about 
the attributes of objects. The decision tree is classified into 
the classification and the regression models. In this paper, 
the regression model is used for estimating the operating 
lifetime (available period) of the target components.  
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Figure 2: Sample of Constructed Estimation Model. 

As shown in Fig. 2, the decision tree model is normally 
composed by nodes and branches. One node expresses a 
question on an attribute, and one leaf node represents a class. 
A set of paths from the root node to the leaf node shows one 
classification rule. In Fig. 2, the constructed tree judges that 
the operating lifetime of the target component is 48 years 
through the answers for questions, “Length (SP 2) is longer 
than or equal to 14 meters” and “Type (SP 1) is not A”. It 
also means that 30 % of all data included in the model con-
struction step had the same characteristics. 
 
 

3.2. Estimation model construction 

Typical approaches for creating the decision tree are Classi-
fication and Regression Tree (CART), Iterative Dichotomis-
er 3 (ID3) and C 4.5 [17,18]. The authors select a CART 
algorithm, which is one of the most popular approaches for 
non-parametric decision tree learning. 
The CART algorithm involves selecting input variables and 
splitting points on those variables until satisfying the con-
vergence criterion. This process is ‘growth’ of the tree. In 
this paper, the residual sum of squares (RSS) is used as the 
splitting criterion. The RSS is used to measure the amount of 
variance in a dataset and expressed as 

, (1) 
where  is the node number;  is the total number of nodes; 
 is the number assigned to concrete poles;  is the total 

number of concrete poles included in the node ;  is the 
actual lifetime of the concrete pole ; is the average 
lifetime for concrete poles included in the node . 
Since the resulting maximum tree model has a possibility of 
overfitting exists, verbose paths are integrated until the com-
plexity cost  becomes sufficiently small. This is ‘pruning’ 
of the tree. 

, (2) 

where  is the set of leaf nodes;  is the total number of 
concrete poles;  is the control parameter. 
Through process of the growth and the pruning, a tree-like 
estimation model for the target components is constructed. 

4. Numerical simulations 

By using the records of actual inspection and maintenance, 
numerical simulations were carried out to verify the validity 
of the authors’ proposal. As summarized in Table 2, there 
are 4,685 available concrete poles, of which 4,451 (95 %) 
poles were used in steps of the data analysis and the model 
construction (learning process). The remaining 234 (5 %) 
poles were used in the estimation step (verification process) 
regarded as the data of newly constructed concrete poles. 
While interchanging the verification dataset with the learn-
ing dataset, the estimation models were repeatedly con-
structed 20 times. Table 4 summarizes datasets for the learn-
ing and the verification. 

Table 4: Breakdown of Dataset for Training and Verification. 

 Below average Above average Total 

Learning dataset 1,969 2,482 4,451 

Verification dataset 106 128 234 

4.1. Estimation results 

Numerical simulation results of the lifetime estimation are 
summarized in Table 5, and error distribution of the numeri-
cal simulations is displayed in Fig. 3. As for reference, re-
sults only using the attributes of concrete electric poles 
(without the weather conditions) are shown in Table 6 [19]. 
Figure 4 illustrates the best regression tree in 20 cases, and 
Fig. 5 displays analysis results of the judgement criterion. 
In the numerical simulations, the root mean square error 
(RMSE), the mean absolute error (MAE) and the mean abso-
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lute percentage error (MAPE) were respectively calculated 
as 

, (3) 

, (4) 

, (5) 

where  is the number assigned to concrete poles;  is the 
total number of estimation targets;  is the actual operating 
lifetime of the concrete pole ;  is the estimated lifetime 
of the concrete pole . 

Table 5: Estimation Results of Decision Tree 

Estimation target RMSE MAE MAPE 
Maximum 

absolute error 

Learning 
dataset 

Best 2.0 years 1.2 years 3.0 % 21.0 years 

Average 2.2 years 1.3 years 3.3 % 25.2 years 

Worst 2.4 years 1.4 years 3.6 % 31.4 years 

Verification 
dataset 

Best 1.9 years 1.2 years 3.2 % 11.8 years 

Average 2.8 years 1.5 years 4.0 % 20.9 years 

Worst 3.6 years 1.8 years 4.7 % 38.4 years 

In Table 5, the RMSE values in all cases were lower than 4 
years (Best: 1.9 years; Worst: 3.6 years). As compared to 
Table 6 (Best: 6.0 years; Worst: 7.3 years), it can be under-
stood that all values of the evaluation indexes were dramati-
cally improved in Table 5. Since the average lifetime in the 
available dataset was 40.8 years as described in Section 2, 
we can expect that the estimation accuracy was sufficiently 
high in practical use of the distribution system planning. 
Although results in the verification dataset were slightly 
worse than those in the learning dataset, there was no signif-

icant difference between them. From these results, the au-
thors concluded that the proposed estimation method func-
tioned very well. 
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Figure 3: Error Distribution in Decision Tree (Average). 

Table 6: Estimation Results of Decision Tree  
(Without Weather Conditions). 

Estimation target RMSE MAE MAPE 
Maximum 

absolute error 

Training 
dataset 

Best 6.5 years 4.9 years 13.5 % 24.7 years 

Average 6.6 years 5.0 years 13.7 % 26.1 years 

Worst 6.7 years 5.1 years 14.0 % 28.8 years 

Verification 
dataset 

Best 6.0 years 4.7 years 12.5 % 18.6 years 

Average 6.8 years 5.2 years 14.3 % 23.0 years 

Worst 7.3 years 5.7 years 15.6 % 30.8 years 

In Fig. 4, all of the weather conditions (WC 1-5) frequently 
appeared as the judgement criteria. With reference to Fig. 5, 
we can confirm that “type” (SP 1) and “length” (SP 2) in 
addition to the weather conditions were selected as the influ-
ential factors in the lifetime estimation. 
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Figure 4: Constructed Tree Model (Best Result in 20 trials). 
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Figure 5: Influential Factors in Results of Decision Tree. 

4.2. Discussions 

In the constructed tree models, all weather conditions (WC 
1-5) and the type and the length of concrete poles (SP 1 and 
2) were selected as the influential factors in estimation of the 
operating lifetime of concrete poles. Here, the above results 
are verified with focusing on the length of concrete poles in 
more details. Figure 6 shows the length distribution of con-
crete poles in the available dataset, and Fig. 7 summarizes 
the relationship between the pole length and the actual oper-
ating lifetime. 

0

150

300

450

600

750

900

1,050

1,200

1,350

1,500

… 8 9 10 11 12 13 14 15 16 17 18 … 30

T
ot

al
 n

um
be

r 
of

 c
on

cr
et

e 
po

le
s

Length (m)  
Figure 6: Length Distribution in Available Data. 
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Figure 7: Average Lifetime of Concrete Poles on Each Length. 

In Fig. 6, most of the concrete poles have length of 12-16 
meters, especially 14 or 15 meters, in the available record. 
As shown in Fig. 7, the operating lifetime decreased gradual-
ly in contrast to the length of concrete poles until the length 
reached 17 meters. These figures show that the length had 
actually influences on the operating lifetime of concrete 
poles. 

5. Application of random forest 

Although values in the RMSE, the MAE and the MAPE 
were sufficiently high in the results of Section 4, the deci-
sion tree, as is well known, has issues in accuracy and stabil-
ity in its application. In fact, values of the maximum abso-
lute errors described in Table 5 became large. As an im-
provement strategy of the operating lifetime estimation, the 
authors applied a random forest instead of the decision tree 
learning. 
Random forest is an ensemble learning method using bag-
ging as the ensemble method and decision tree as the indi-
vidual model. With the aim of reducing the variance, random 
forests average multiple decision trees trained on different 
parts in the same dataset [21]. Estimation accuracy of the 
random forests generally is higher than that of decision trees; 
however, data characteristics can affect their performance. 
Under the same conditions as Section 4, the operating life-
time of concrete poles was estimated. Table 7 summarizes 
the results of random forest application. Error distribution of 
the random forest is illustrated in Fig. 8. 

Table 7: Estimation Results of Random Forest. 

Estimation target RMSE MAE MAPE 
Maximum 

absolute error 

Training 
dataset 

Best 0.8 years 0.5 years 1.32 % 8.1 years 

Average 0.8 years 0.5 years 1.35 % 8.6 years 

Worst 0.8 years 0.5 years 1.37 % 10.9 years 

Verification 
dataset 

Best 1.3 years 0.9 years 2.33 % 7.7 years 

Average 1.7 years 1.0 years 2.64 % 13.3 years 

Worst 2.1 years 1.2 years 2.96 % 22.1 years 
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Figure 8: Error Distribution in Random Forest (Average). 

In Table 7, values of all evaluation indexes became lower 
than those in Table 5. In particular, the maximum absolute 
errors were reduced significantly, and it also means that the 
estimation stability was actually improved by the random 
forest. Since the RMSE values were almost under 2 years in 
the verification dataset (Best: 1.3 years; Worst: 2.1 years), 
we can conclude that the random forest was more practical 
in the records used for this study than the decision tree learn-
ing. 
Figure 9 shows influential factors in the random forest, and 
Fig. 10 summarizes comparison with those in decision tree 
learning. From Figs. 9 and 10, it can be understood that pri-
ority of each factor was changed. In the results of random 
forest, influences of the weather conditions (WC 1-5), espe-



6 Measurement, Control, and Automation 
 
cially for the mean daily temperature (WC 2), were reduced. 
Moreover, influence of the type of concrete poles (SP 1) 
became very weak. As a result, influence of the length (SP 2) 
was emphasized in the random forest. 
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Figure 9: Influential Factors in Results of Random Forest. 
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Figure 10: Comparison of influential factors in simple decision tree and  
random forest 

6. Conclusions 

The authors proposed a decision tree-based estimation meth-
od for operating lifetime of newly constructed electrical 
components. In estimation of the operating lifetime, the in-
spection and the maintenance records were utilized for ana-
lyzing relationships between initially available information 
(sets of the attributes of target component and the weather 
conditions) and the operating lifetime. The resulting tree-like 
model achieved the operating lifetime estimation by using 
only the initial information of newly constructed electrical 
components. From the results of numerical simulations, we 
could confirm that the proposed estimation method had suf-
ficiently high accuracy in practical use of the distribution 
system planning. In addition, the weather conditions and 
type and length of the concrete poles were specified as the 
influential factors on the operating lifetime. 
In future work, the authors will analyze the relationship be-
tween the influential factors and the operating lifetime in 
more detail. Improvement of the estimation stability, as 
shown in Section 5, also become an important issue of this 
study. 
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