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Abstract

This research focuses on the integration of a radial basis function neural network (RBFNN) for uncertainty approximation in pneumatic
artificial muscle (PAM) systems within the framework of power rate exponential reaching law sliding mode control (PRERL-SMC). Configured
in an antagonistic manner, PAMs provide a range of benefits for developing actuators with human-like characteristics. Nevertheless, their
intrinsic nonlinearity and uncertain behavior are obstacles to attaining accurate control, particularly in rehabilitation scenarios where ensuring
control precision is imperative for safety and effectiveness. The proposed method leverages a power rate exponential reaching law to ensure
chattering-free control and swift convergence towards desired trajectories, while the RBFNN effectively approximates system uncertainties.
Through comprehensive experiments, we compare the RBF-PRERL-SMC approach with conventional control methods, showcasing its superior
performance in tracking various trajectories. Notably, our strategy proves robust against external perturbations, demonstrating its applicability
in rehabilitation scenarios.
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1. Introduction

The field of robotics has witnessed remarkable advancements in
recent years, with applications ranging from industrial automa-
tion to healthcare. Among these innovations, pneumatic artifi-
cial muscle (PAM) systems have emerged as promising candi-
dates for creating bio-inspired actuators capable of human-like
motions. PAMs, known for their lightweight, cylinder shape,
high power-to-weight ratio, low cost, ease of maintenance,
cleanliness, and compliant nature, hold great promise in fields
like prosthetics, exoskeletons, and rehabilitation [1, 2, 3, 4].
However, their nonlinear behavior and inherent uncertainty
have posed significant challenges for achieving precise and
adaptive control, particularly in scenarios where safety and
effectiveness are paramount. Thanks to its robustness, adapt-
ability, and ease of implementation, the sliding mode con-
trol theory has gained prominence across various domains of
control and automation. This approach proves especially ef-
fective in managing intricate nonlinear models like the PAM
system, renowned for its inherent nonlinearity. Nonetheless,
conventional sliding-mode controllers might encounter chal-
lenges in delivering satisfactory performance when dealing
with PAM systems exhibiting underactuated attributes. The
concept of sliding mode control (SMC) comprises two funda-
mental modes, namely the reaching phase and the sliding phase
[5, 6]. In the reaching mode, the system trajectory progres-

sively approaches the predefined switching surface within a
finite-time. Following this, during the sliding mode, the trajec-
tories exhibit a distinct “sliding” behavior, smoothly converg-
ing towards the origin within the phase plane. A key challenge
in SMC is chattering, resulting from rapid and high-frequency
control signal switching. Chattering poses significant risks
in real-time systems, potentially causing actuator wear and
damage, making it undesirable. The issue of chattering in slid-
ing mode control has garnered substantial attention within the
research landscape, evident from the variety of strategies pro-
posed in references [7, 8, 9, 10, 11, 12, 13, 14]. Furthermore,
the intricate nature and inherent uncertainties inherent in PAM
systems present substantial hurdles when developing efficient
controllers. Consequently, there exists a significant demand
for adaptive and intelligent algorithms that can complement
and enhance the sliding mode control strategy.
In recognition of this challenge, researchers have been actively
exploring novel approaches to enhance control quality and
overcome the limitations of conventional controllers within
the context of PAM systems. For instance, the work presented
in [15] introduced a control design based on reinforcement
learning for a pneumatic gearbox actuator. Similarly, modern
and adaptive methodologies have been applied to PAM systems,
such as model-free techniques employed for gripper fingers
[16], as well as adaptive controllers tailored for PAM subjects
[17, 18, 19, 20]. Additionally, the integration of fuzzy logic
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control, known for its adeptness in handling complex systems,
has been extensively explored in conjunction with conventional
methods to enhance control quality [21, 22, 23, 24, 25, 26, 27],
among others.

However, when confronted with the unique challenges posed
by highly nonlinear and uncertain PAM systems, the necessity
for an intelligent algorithm endowed with distinct capabilities
such as approximation, adaptivity, and generalization becomes
evident. The radial basis function neural network (RBFNN)
emerges as a promising solution, excelling in the realms of
automation and control. Its ability to model and approximate
intricate nonlinear systems while maintaining robustness ren-
ders it particularly suitable. Notably, a recent study by Gendi
Liu et al. showcased the application of neural networks for
tracking control of a dual-PAM arm robot, culminating in suc-
cessful hardware experiments on a real PAM humanoid actua-
tor model [28]. The amalgamation of the RBFNN and sliding
mode control methods holds significant promise, capitalizing
on the individual strengths of each. The RBF-SMC method,
underpinned by theoretical advancements [29], has also been
effectively employed in diverse control contexts, including
servo motors [30] and robotic systems [31, 32, 33].

In this study, the proposed improvement strategy is using RBF
neural networks to approximate the uncertain parameters in-
herent in an antagonistic configuration of PAMs base on the
framework of a sliding mode control method enhanced by
PRERL. Integrating RBFNN and PRERL-SMC is crucial for
effectively addressing challenges in controlling PAM systems,
especially those with underactuated characteristics. The intrin-
sic nonlinearity of PAM systems can complicate control tasks
that conventional sliding-mode controllers struggle to han-
dle. RBFNNs excel in approximating PAM system uncertain-
ties, enhancing adaptability and control precision. Meanwhile,
PRERL-SMC offers chattering-free control and rapid conver-
gence to desired trajectories, vital for accurate and smooth
control actions.

In summary, this research offers valuable contributions that
significantly enhance control performance within the realm
of PAM systems. Primarily, it introduces an adaptive control
mechanism, purposefully crafted to proficiently manage the
often challenging antagonistic configurations present in PAMs.
This is achieved through the integration of RBFNN and the
innovative PRERL-SMC. Moreover, the paper provides com-
pelling evidence of the practicality and high potential impact
of this hybrid approach by showcasing extensive experimen-
tal results conducted under diverse conditions. These results,
collectively demonstrating the effectiveness and suitability of
the proposed method, strongly emphasize its relevance and
applicability in the domain of rehabilitation applications.

The paper is structured as follows: Section 2 outlines the ex-
perimental setup and the mathematical model of the PAM
system. In Section 3, the design and stability analysis of the
proposed RBF-PRERL-SMC controller are discussed. Section
4 presents the experimental results validating the effectiveness
of the proposed approach. Finally, Section 5 concludes the
paper by summarizing contributions and suggesting potential
future research directions.

2. System modeling

The PAM-based experiment setup is shown in Figure 1, with
its diagram presented in Figure 2. This configuration consists
of a pair of self-made pneumatic artificial muscle actuators,
arranged antagonistically, with a diameter of 23× 10−3 (m)
and a nominal length of 40×10−2 (m). The internal pressure
of the pneumatic artificial muscle actuators is regulated via
a proportional valve from SMC company, resulting in the ro-
tational motion of a pulley wheel. A WDD35D8T angular
sensor quantifies this rotational motion. The control system
for this configuration utilizes the National Instruments myRIO-
1900 embedded controller to process angle potentiometer data
and deliver control signals to proportional valves. LabVIEW
software is employed to interface, supervise, and monitor the
complete experimental procedure.
Given the antagonistic system configuration illustrated in Fig-
ure 2, in which the internal pressures of the two PAMs can be
described as follows:{

P1 = P0 +∆P
P2 = P0 −∆P (1)

where P0 denotes the PAMs’ initial pressure, and ∆P represents
the changed pressure.
The control voltages for regulating the PAMs’ proportional
valves are formulated as follows:{

u1 = u0 +u = k0(P0 +∆P)
u2 = u0 −u = k0(P0 −∆P) (2)

u0 signifies the preloaded voltage, while k0 relates the output
pressure of pneumatic artificial muscles (PAMs) to the control
voltage u. The variable u becomes the manipulated parameter,
acting as the control input for the closed-loop system, govern-
ing PAM contraction and consequently altering the joint angle
θ . The deflection angle signal is then conveyed back through
a sensor, establishing a correlation where antagonistic PAM
pairs function as a single-input single-output system. Here,
the control voltage u from the Myrio controller serves as the
input, while the measured pulley’s angle θ becomes the output.
For this type of control system, a linear model characterizes
the system’s behavior, with any residual modeling error con-
sidered a lumped disturbance and managed by the controller.
In our investigation, leveraging input/output data and a series
of experiments, we adopt a discrete-time second-order math-
ematical model with perturbation as the representation of the

Figure 1. Experiment Platform of PAM-Based Antagonistic Configu-
ration.
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Figure 2. The structure schematic of the antagonistic PAMs system.

system [34]:

y(k+1) =−
n

∑
i=1

aiy(k− i+1)+
m

∑
j=1

b ju(k− j+1)+ p(k), (3)

in which u(k) is the control signal represents the control voltage
u from Myrio controller, y(k) represents the measured angle at
sample kth, and p(k) accounts for the uncertain and unknown
components of the system, and is bounded p(k) ≤ D. Here,
ai and b j stand for the model parameters (with b j ̸= 0), and
n = m = 2, denoting the order of the model. The specific
numerical values corresponding to the model parameters are
displayed in Table 1.

3. Design of the control strategy

This study presents a novel approach to PAM system control
by introducing discrete-time SMC alongside power rate expo-
nential reaching law (PRERL) and radial basis function neural
network (RBFNN) uncertainty approximation. The objective is
to ensure a control process devoid of chattering and to achieve
rapid convergence, while maintaining tracking accuracy intact.
The control algorithm’s design is depicted in Figure 3. The in-
tended signal, referred to as y∗, represents the desired trajectory,
while the measured joint angle y captured by a potentiometer
constitutes the output signal.
The closed-loop control system incorporates feedback, utiliz-
ing the tracking error to contribute input to the RBFNN, the
adaptive mechanism, and the sliding mode based controller.
The uncertain factor f (y) is estimated via the adaptive cluster-
ing process and subsequently communicated to the controller.
The fresh reaching law proposal merges the conventional power
rate approach with an exponential element, thereby forming
an altered iteration of the constant reaching law. Based on
the control signal u, two electrical valves alter the pressures,
represented as P1 and P2, applied to the two opposing PAMs to

Table 1. Model parameters

Parameters Values

a1 −1.9567±0.0092

a2 0.9576±0.0128

b1 0.0126±0.0013

b2 0.0124±0.0049

produce the required motion.
Equation 3 can be rewritten as:

y(k+1) =− f (y(k))+
m

∑
j=1

b ju(k− j+1) (4)

in which f (y(k)) =
n

∑
i=1

aiy(k− i+1)− p(k)

3.1. Sliding surface

This research proposed the following sliding surface

s(k) = e(k)+λe(k−1) (5)

in which e(k) = y∗(k)− y(k) is the tracking error and λ > 0 is
a tuning constant. Taking sample extraction at the next time
step, (5) becomes:

s(k+1) = e(k+1)+λe(k) (6)

which is equivalent to:

e(k+1) = s(k+1)−λe(k) = s(k+1)−λ [y∗(k)− y(k)] (7)

Utilizing the selected PAM system as outlined in equation (3),
the tracking error for the upcoming time step can be formulated
as:

e(k+1) = y∗(k+1)− y(k+1)

= y∗(k+1)+ f (y(k))−
m

∑
j=1

b ju(k− j+1)
(8)

where y∗(k+1) is the one-sample forward of the desired signal.
Since the reference trajectory is predetermined in control ap-
plications, it is assumed that y∗(k+1) is already known. From
equation (7) and equation (8), we have

s(k+1) = y∗(k+1)+ f (y(k))−
m

∑
j=1

b ju(k− j+1)

+λ [y∗(k)− y(k)] (9)

3.2. Discrete-time power rate exponential reaching law

In an effort to concurrently achieve chattering suppression and
rapid convergence, the discrete-time reaching law employed in
this study is presented as follows [35]:

s(k+1) = s(k)− γ

Ψ(k)
|s(k)|α sgn(s(k)), k > 0 (10)

in which

Ψ(k) = δ0 +(1−δ0)e−β |s(k)|p (11)

where δ0, β , and γ are strictly positive constants (δ0 < 1),
p is an integer (p > 0). The inclusion of this exponential
term enables the controller to flexibly adapt to changes in
the switching function, adjusting the gain within the range
of γ to γ/δ0. As a result, this approach effectively mitigates
the occurrence of the chattering phenomenon. Through the
integration of the power rate technique, the suggested controller
significantly improves its effectiveness by alleviating chattering
and concurrently enhancing the reaching speed.
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Figure 4. The 1-q-1 RBFNN structure.

Remark 1. If δ0 is set to one and α is set to zero, the resul-
tant controller transforms into the DSMC with a constant rate
reaching law. This implies that the conventional reaching law
is a specific instance of the introduced method.

Afterward, the proposed control signal is obtained by inserting
the sliding variable sk+1 from equation (10) into equation (9),
and subsequently solving for uk. This yields:

uk =
1
b1

{
y∗(k+1)+ f (y(k))−

m

∑
j=2

b ju(k− j+1)

+λ [y∗(k)− y(k)]− s(k) +
γ

Ψ(k)
|s(k)|α sgn(s(k))

}
(12)

3.3. RBF neural network design

At Eq. 12, since the element f (y) is unknown and uncertain
due to the system’s characteristics, we utilized radial-basis-
function neural network to approximate f (y). To increase
control accuracy and adjust to parameter fluctuations, this work
aims to introduce an SMC strategy combined with the RBFNN
for uncertainty estimation purposes and simultaneously apply
it to the PAM configuration.
In this study, the 1-q-1 radial basis function neural network
(RBFNN) architecture (Figure 4) is employed to approximate
the function f (·) using the subsequent algorithm:

f̂ (y(k)) = ŵ(k)T h(y(k−1)) (13)

where the selection of the value y(k− 1) serves as the input
to the network, ŵ(k) represents the vector containing the net-
work’s weight values. The vector h = [hl ]

T corresponds to the
output of the Gaussian function, with each component hl being
defined in a subsequent manner

hl = exp
(
−∥ y(k−1)− pl ∥2

b2
l

)
(14)

where
p = [pl ] = [p1, p2, ..., pq]

represents the positional value of the Gaussian function’s center
point within the neural network. This vector consists of a single
row that corresponds to the number of elements in the input.
The index l, ranging from 1 to q, signifies the hidden layer
node number. Additionally, the Gaussian function’s spread for
node l is denoted by the vector b = [bl ] = [b1, ...,bq]

T . For any
non-zero value of the approximation error bound ε f , there exist
specific optimal weight vectors w∗ such that:

f (y) = f̂ (y,w*)−∆ f (y) (15)

where ∆ f (y) represents the optimal network approximation er-
ror, and |∆ f (y)|< ε f . Subsequently, we can derive the general
network approximation error as follows:

f̃ (y(k)) = f (y(k))− f̂ (y(k))

= f̂ (y(k),w∗)−∆ f (y(k−1))− ŵ(k)T h(y(k−1))

=− w̃(k)T h(y(k−1))−∆ f (y(k−1)) (16)

where w̃(k) = ŵ(k)− w∗ . With the estimated component
f̂ (y(k)), the control law at (12) is rewritten as:

u(k) =
1
b1

{
y∗(k+1)+ f̂ (y(k))−

m

∑
j=2

b ju(k− j+1)

+λ [y∗(k)− y(k)]− s(k)+
γ

Ψ(k)
|s(k)|α sgn(s(k))

} (17)

Assuming that the sliding surface (10) is approached, it means
s(k)→ 0, substituting (17) into (4), we have:

y∗(k+1)− y(k+1) = f (y(k))− f̂ (y(k))−λ [y∗(k)− y(k)]

e(k+1) = f̃ (y(k))−λe(k)
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Thus,

e(k)+λe(k−1) = f̃ (y(k−1)) (18)

The expression for (18) can also be represented as:

e(k) = Γ
−1(z−1) f̃ (y(k−1)) (19)

where Γ−1(z−1) = 1+ λ z−1, z−1 is the discrete-time delay
operator. Introduce a novel augmented error denoted as:

e1(k) = η [e(k)−Γ
−1(z−1)v(k)] (20)

where η > 0.
By replacing (19) into (20), we obtain:

e1(k) = ηΓ
−1(z−1)[ f̃ (y(k−1))− v(k)]

= η
1

1+λ z−1 [ f̃ (y(k−1))− v(k)]

resulting in the relationship:

e1(k−1) =
η [ f̃ (y(k−1))− v(k)]− e1(k)

λ
(21)

The auxiliary signal v(k) is designed in such a way that the
convergence of e1(k)→ 0 implies the convergence of e(k)→ 0.
The design of the auxiliary signal is based on a well-established
theory described in [36]:

v(k) = v1(k)+ v2(k)

with v1(k) =
η

2µλ 2 hT (y(k−1))e1(k) and v2(k) = Ge1(k). (G

is a positive constant)
From (20), we obtain

e1(k) = η

[
e(k)− 1

1+λ z−1 v(k)
]

(22)

or

e1(k)× (1+λ z−1) = η
[
e(k)(1+λ z−1)− v(k)

]
(23)

Therefore,

e1(k) =−λe1(k−1)+η [e(k)+λe(k−1)− v(k)] (24)

Let’s consider v(k) as a virtual variable, define v
′
1(k) =

η

2µλ 2 hT (y(k − 1))h(y(k − 1)), then we have v(k) =[
v
′
1(k)+G

]
e1(k). Blending in (24), we received:

e1(k) =
−λe1(k−1)+η [e(k)+λe(k−1)]

1+η
[
v′

1(k)+G
] (25)

The adaptive law is designed as:

∆ŵ(k) =


η

µλ 2 h(y(k−1))e1(k) if |e1(k)|> ε f /G

0 if |e1(k)| ≤ ε f /G
(26)

where ∆ŵ(k) = ŵ(k)− ŵ(k−1), µ and G are constants strictly
greater than zero.

3.4. Stability analysis

In this section, we will theoretically prove the behavior of the
sliding function as depicted in the proposed reaching law (10).

Lemma 1. Defining a positive function Φ(α) as

Φ(α) = 1+α
α

1−α −α
1

1−α (27)

in which 1 < Φ(α)< 2 if 0 < α < 1 [37].

Theorem 1. For the discrete-time SISO system (3) along with
the sliding surface (5) and the controller (12), the assurance is
provided that the sliding variable s(k) will enter the finite-time
region Ω, which is defined as:

Ω =

{
|s(k)| ≤ Φ(α)

γ

Ψ(k)

1
1−α

}
(28)

Proof. Designing Lyapunov function V (k) = [s(k)]2 and base
on (10), one obtains

∆V (k) =V (k+1)−V (k)

=−
[

γ

Ψ(k)
|s(k)|α sgn(s(k))

]
×[

2s(k)− γ

Ψ(k)
|s(k)|α sgn(s(k))

]
(29)

If s(k) /∈ Ω, there will have two cases for s(k).

Case 1. s(k)> Φ(α) γ

Ψ(k)

1
1−α > 0

In this case, it can be derived that

[s(k)]1−α > [Φ(α)]1−α γ

Ψ(k)
(30)

which results in

[s(k)]α [s(k)]1−α > [s(k)]α [Φ(α)]1−α γ

Ψ(k)
(31)

Since [Φ(α)]1−α > 1, the following deduction can be held

s(k)> |s(k)|α γ

Ψ(k)
sgn(s(k))> 0 (32)

which implies

2s(k)− γ

Ψ(k)
|s(k)|α sgn(s(k))> 0 (33)

Thus, in both observation of (29), (32), and (33), it becomes

∆V (k) =V (k+1)−V (k)< 0 (34)

Case 2. s(k)<−Φ(α) γ

Ψ(k)

1
1−α < 0

By conducting a similar analysis, it can be deduced that
∆V (k) < 0 remains valid. As a result, the sliding variable
s(k) will indeed enter the domain Ω within a finite number of
steps. This concludes the proof.

Lemma 2. Mentioned function Φ(α) in (27), if 0 < α < 1,
then θΦ(α)−θ α [Φ(α)]α +Φ(α)−1 ≥ 0 for any θ ∈ [0,1].



Measurement, control and automation 69

Proof. Define g(θ) = θΦ(α)−θ α [Φ(α)]α +Φ(α)−1.
First, since Lemma 1 implies 1 < Φ(α) < 2 if
0 < α < 1, we can easily infer that g(0) = Φ(α)− 1 > 0
and Φ(α) − [Φ(α)]α > 0, which also remains
g(1) = Φ(α)− [Φ(α)]α +Φ(α)−1 > 0.

Secondly, by solving ġ(θ) = 0 to determine the critical points
of g(θ), we obtain:

Φ(α)−αθ
α−1

Φ(α)α = 0 (35)

which follows θ 1−α = αΦ(α)−(1−α) then θ =

[α
1

1−α ]/[Φ(α)].
By substituting it into g(θ), we arrive at g(θ) = 0 with the
critical point θ = α

1
1−α /Φ(α). Considering the values of g(0)

and g(1) as well, it can be concluded that min
θ∈[0,1]

g(θ) = 0. This

concludes the proof of Lemma 2.

Theorem 2. Once s(k) enters the region Ω, it remains confined
within it and cannot exit.

Proof. Suppose s(k) = θΦ(α)
(

γ

Ψ(k)

) 1
1−α

with 0 ≤ θ ≤ 1. By
considering the reaching law (10), we can deduce that

s(k+1) = θΦ(α)
γ

Ψ(k)

1
1−α − (θΦ(α))α γ

Ψ(k)

1
1−α

=
[
1− (θΦ(α))α−1

]
θΦ(α)

γ

Ψ(k)

1
1−α

(36)

Since θΦ(α)≥ 0,
[
1− (θΦ(α))α−1

]
≤ 1. Thus, we can de-

rive from (36) the following expression:

s(k+1)≤ Φ(α)
γ

Ψ(k)

1
1−α

(37)

Beside, examining (36) provides:

s(k+1) =
[
θΦ(α)− (θΦ(α))α

] γ

Ψ(k)

1
1−α

(38)

Considering the range of 0 < α < 1, if θΦ(α) ≥ 1, then
θΦ(α)− (θΦ(α))α > 0. Moreover, if 0 ≤ θΦ(α) ≤ 1, it
can be deduced from Lemma 2 that: θΦ(α)− θ

α
Φ(α)α ≥

1−Φ(α)≥−Φ(α). Hence, based on the range of 0 ≤ θ ≤ 1,
it can be concluded that:

s(k+1)≥−Φ(α)
γ

Ψ(k)

1
1−α

(39)

Consequently, it can be deduced from (37) and (39) that when
s(k) ∈ Ω, the state s(k+ 1) ∈ Ω. A similar outcome can be

derived under the assumption: s(k) = θΦ(α)
γ

Ψ(k)

1
1−α

with

−1 ≤ θ ≤ 0, which results in s(k+1) ∈ Ω. As a consequence,
the sliding variable will remain within the region Ω subsequent
to its entry.
This completes the proof.

Remark 2. In the context of the power rate method, the pres-
ence of the condition 0 < α < 1 is crucial. However, it’s worth
noting that when α takes a relatively high value, the sliding
mode motion might not occur. While this can lead to rapid
reaching of the equilibrium point, it also tends to negatively
impact the system’s robustness. As a result, it’s recommended
to choose α within the range of 0 < α < 0.5, a suggestion put
forth in [35].

4. Experimental results

This section delves into the assessment of the effectiveness
of the introduced controller in achieving the desired trajecto-
ries. The experimentation was conducted using the NI-Myrio
1900 microcontroller along with the NI LabVIEW software
application. To implement the control algorithm, a discrete
sampling time of 5 milliseconds (Ts) was chosen. Further-
more, the main purpose of this study is to provide accreditation
for the enhancement of radial-basis-function neural networks
(RBFNN). The comparison involves evaluating the suggested
control method against an exponential reaching law discrete-
time sliding mode controller (PRERL - DSMC) without the use
of the RBFNN technique. This evaluation is conducted based
on performance criteria under identical operating conditions.
The model parameters for the PAMs system are provided in
Table 1. Besides, the control parameters for the PRERL tech-
nique are fine-tuned through trial and are detailed in Table 2.
Notably, PRERL-SMC base common parameters between the
two controllers being compared are kept consistent.

Table 2. Parameters of the PRERL technique

Parameters λ γ δ0 β p α

Values 0.5 3 0.2 0.05 1 0.4

Due to the intricate nature of the system, we opted for a 1-7-1
configuration for the RBF neural network. In this setup, the
input of the neural network consists of a single node represent-
ing the measured joint angle. The hidden layer is composed
of 7 nodes to encompass the span of the signal and compute
weight vectors effectively. The width value b is determined to
offer optimal efficacy. The output layer includes a single node
that signifies the approximated parameter f (x) of the PAM
object. The parameters of the RBFNN adaptive method display
as follows:
p =

[
−40 −20 −10 0 10 20 40

]
,

b = [2,2,2,2,2,2,2],
η = 0.05, G = 5000, ε f = 0.03, µ = 0.03.
Following that, experiments were undertaken to assess the
performance of the suggested controller in two distinct tasks:
tracking the intersection of sinusoidal trajectories and tracking
gait trajectories.

4.1. Tracking the conjuncture of sinusoidal signals

In this part, the required trajectories are made up of several
signals. Consequently, a combination of three sinusoidal
signals, each possessing distinct amplitudes and frequencies,
is employed to form the reference signal. The equation
describing the reference trajectory is determined as follows:
y∗(k) = Asin(2π f × kTs) + 0.5Asin(2π0.1 × kTs) +
0.2Asin(2π0.5× kTs), with Ts = 0.005(s)
During the practical experimentation, the base amplitude is set
at A= 30◦, and the base frequency f is tested at both 0.2Hz and
0.3Hz. The experiment outcomes with f = 0.3Hz are depicted
in Figure 5. The upper and lower sub-figures correspondingly
display the tracking performance and tracking error.
The results from these scenarios illustrate the outstanding track-
ing capabilities of the proposed controller. The MTE is around
3.0◦, ensuring a satisfactory level of accuracy. Compared to the
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Figure 5. Experiment results when tracking combined sinusoidal
trajectory with 0.3Hz of basis frequency.
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Figure 6. Experiment results when tracking 0.5Hz hip trajectories.

PRERL-SMC, the RBF-PRERL-SMC demonstrates significant
superiority, particularly when dealing with high-angle rates of
change. The RBF-PRERL-SMC maintains robust and accurate
tracking performance, while the simpler controller exhibits
lower accuracy, with a maximum tracking error of approxi-
mately 6.0◦, which is twice as high as that of the proposed
controller. Examining the root-mean-square error (RMSE)
statistics, presented in Table 3, it is evident that the RBF-
PRERL-SMC controller achieves an RMSE of approximately
1.1◦, which is twice as good as its counterpart with an RMSE
value of about 2.5◦.

4.2. Tracking gait-pattern signals

To evaluate the system’s tracking capacity for rehabilitation
applications, we examined its performance using gait trajecto-
ries. We utilized human gait data obtained from a prior study
[38] to generate reference signals for the hip and knee joints,
which were subsequently employed in our experiments. The
outcomes of the experiments, focused on tracking the hip and
knee trajectories, are depicted in Figures 6 and 7, respectively.
In the case of the hip joint, the intended angle range encom-
passes values between −16.5◦ and +13.5◦, while for the knee

0 1 2 3 4 5 6 7 8 9 10
-5
0
5

10
15
20
25
30
35
40
45

A
ng

le
 (

o
)

Desired Non-RBF RBF

0 1 2 3 4 5 6 7 8 9 10

Time(s)

-6

-4

-2

0

2

4

6

T
ra

ck
in

g 
E

rr
or

 (
o
)

Error Non-RBF Error RBF

Figure 7. Experiment results when tracking 0.5Hz knee trajectories.

Table 3. RMSE of two controllers at combined sinusoidal signals
experiment.

Basis frequency Non-RBF RBF

0.2 2.25 1.10

0.3 2.40 1.00

joint, it varies between 0.0◦ and +40.0◦. All the specified
desired trajectories were executed at frequencies of 0.2Hz and
0.5Hz.
The experiment has been successfully conducted, and stabil-
ity has been achieved in all tested scenarios. When evaluated
based on the Maximum Tracking Error (MTE) criteria, there
is no significant difference between the RBF-PRERL-SMC
and the conventional controller when tracking hip joint tra-
jectories, as the MTEs of both controllers are approximately
16◦. This is due to the non-zero initial angle of the desired
signal, while the actual angle is initially set as zero (as shown
in Figure 6). However, the RBF-PRERL-SMC controller ex-
hibits a faster convergence speed and lower error. The superior
performance of the RBF-PRERL-SMC method is also evident
from the RMSE criteria presented in Table 4. While tracking
the hip joint trajectory, the performance of the conventional
method deteriorates rapidly (RMSE values is 3.27◦ at 0.5Hz).
In contrast, the with-RBF method maintains a high level of
tracking ability with RMSEs of 2.28◦ at 0.5Hz. Similar results
are observed for the knee joint.

4.3. Tracking experiments with external disturbances

For rehabilitation, it is crucial to thoroughly examine the ro-
bustness and stability of the system thoroughly. In practical
scenarios, the presence of disturbances cannot be overlooked,
as they inevitably affect control performance. To simulate such
conditions, we conducted experiments with the antagonistic
PAM system horizontally set up. After the system had been op-
erating smoothly for approximately 5 seconds, we introduced a
sudden vertical load of ten kilograms. The experimental results
under various conditions are illustrated in Figures 8 and 9. It
becomes evident that an extremely heavy load disrupts stability
almost immediately. The RBF-PRERL-SMC strategy takes
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Table 4. RMSE (◦) of two controllers when tracking gait-pattern
signals

Gait’s frequency Hip joint Knee joint
Non-RBF RBF Non-RBF RBF

0.2 Hz 2.47 1.84 1.85 1.10

0.5 Hz 3.27 2.28 2.66 1.48
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Figure 8. Experiment results when tracking combined sinusoidal
trajectories with an external disturbance.

around 2 seconds to regain stability, while the non-RBF ap-
proach requires a significantly longer period or might even lose
control quality. These results confirm that the system upgraded
by the RBF technique can maintain equilibrium and endure
substantial external disturbances. However, when subjected to
a substantial disturbance, the control quality might experience
a slight decline.

5. Conclusion and Discussion

In this study, we presented an enhanced discrete-time sliding
mode control approach for pneumatic artificial muscle (PAM)
systems. The integration of a radial basis function neural net-
work (RBFNN) for uncertainty approximation, along with the
utilization of power rate exponential reaching law sliding mode
control (PRERL-SMC), has been shown to significantly im-
prove the performance of PAM systems. The combination of
these techniques addresses the inherent challenges posed by
PAMs’ nonlinearity and uncertainty, particularly in scenarios
such as rehabilitation applications where precise control is
essential for safety and effectiveness. The power rate exponen-
tial reaching law effectively suppressed chattering, ensuring
smooth control actions and minimizing unnecessary oscilla-
tions. Furthermore, the RBFNN contributed to accurate uncer-
tainty approximation, enhancing the overall control precision
and adaptability of the system. The results obtained under-
score the applicability of the proposed approach in real-world
scenarios, showcasing its effectiveness in achieving robust and
precise control. Notably, the proposed strategy exhibited ro-
bustness against external perturbations, which is crucial for
maintaining control quality in real-world scenarios.
For forthcoming research, we intend to explore more advanced
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(a) Hip joint’s trajectory.
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(b) Knee joint’s trajectory.

Figure 9. Experiment results when tracking gait trajectories at 0.2Hz
with an external disturbance.

RBF algorithms and integrate them with other control strategies
to fully harness the potential of neural networks. This amalga-
mation aims to further elevate the system’s performance and
efficacy. Additionally, we plan to conduct targeted practical
experiments tailored specifically to rehabilitation contexts.
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[38] Céline Schreiber, , and Florent Moissenet. A multimodal dataset of
human gait at different walking speeds established on injury-free adult
participants. Scientific Data, 66(1), 2019.


	Introduction
	System modeling
	Design of the control strategy
	Sliding surface
	Discrete-time power rate exponential reaching law
	RBF neural network design
	Stability analysis

	Experimental results
	Tracking the conjuncture of sinusoidal signals
	Tracking gait-pattern signals
	Tracking experiments with external disturbances

	Conclusion and Discussion

