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Abstract 
 
Over the past few decades, the utilization of solar power has gained immense significance in the power grid, gradually taking over the 

responsibilities of fossil fuel-based power. Therefore, accurate short-term forecasting of photovoltaic power output is crucial for making 

informed decisions regarding power generation, transmission, and distribution. Consequently, many machine-learning models were used to 

reliably forecast solar power. In this study, four machine learning models have been studied which are Artificial Neural Networks, Convolu-

tional Neural Networks, Long Short-Term Memory (LSTM) and Extreme Learning Machine (ELM). They have been used to forecast the 

solar power of Nhi Ha solar farm in short-term. First, data from Nhi Ha solar farm were collected and underwent preprocessing before being 

utilized by aforementioned distinct machine learning models. The Root Mean Squared Error (RMSE) and normalized RMSE (N-RMSE) 

obtained from the models will be analyzed to determine the most effective model for short-term solar power forecasting. Following a com-

prehensive analysis, it has been determined that all four models have produced favorable outcomes, with low values of RMSE and N-RMSE 

indicating high levels of reliability and accuracy. Of the models considered, the LSTM and ELM models have demonstrated better perfor-

mance, making them the good choice for precise short-term solar power forecasting. 
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RMSE Root Mean Squared Error 

N-RMSE Normalized Root Mean Squared Error 

 

1. Introduction 

In recent years, the utilization of solar power in Vietnam has 

experienced a remarkable surge, with the government imple-

menting plans to promote further use of this renewable energy 

source. In 2020, Decision 13/2020/QD-TTg was enacted, 

which introduced a variety of new incentives and mechanisms 

aimed at attracting investors to solar power projects within the 

country [1]. Considering Vietnam’s accelerated expansion in 

the renewable energy sector, particularly in electricity, solar 

power is progressively becoming an indispensable element of 

Vietnam’s power grid. This necessitates the development of 

precise and accurate forecasting models. The integration of 

solar energy into the power grid presents numerous challenges 

due to the highly volatile and unpredictable nature of solar 

energy sources. These characteristics are influenced by vari-

ous environmental factors such as sunlight intensity, wind 

speed, and temperature. Any inaccuracies in forecasting can 

lead to errors in power grid management, potentially resulting 

in significant social and economic impacts that could disrupt 

businesses and civilian life. Consequently, the accurate fore-

casting of solar power is essential for ensuring the stability 

and maintenance of the power grid. The evolution and appli-

cation of various forecasting models and technologies over re-

cent decades have simplified the management of electricity in 

Vietnam, facilitating a more stable and seamless integration 

of solar power into the power grid. 

Over the past several decades, numerous techniques have 

been developed to forecast the capacity of solar farms[2]. 

These forecasting methods can be classified in several ways, 

one of which is based on the forecasting models themselves. 

These categories include: Statistical methods (time series-

based methods); Artificial intelligence methods; Physical 

methods; and Mixed methods (hybrid or ensemble methods) 

[3]. Statistical methods such as Autoregressive Moving Aver-

age (ARMA) [4], [5] or Autoregressive Integrated Moving 

Average (ARIMA) [6] have been widely used in various 

short-term solar power forecasting applications. However, 

these models often encounter several limitations, such as their 

inability to accurately forecast non-linear data or their de-

pendence on historical data. To mitigate these inaccuracies, 

machine learning models or machine learning models are em-

ployed, yielding improved results. 
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Owing to their superior performance, machine learning mod-

els have been increasingly adopted for short-term solar power 

forecasting. Common machine learning models include Arti-

ficial Neural Network (ANN), Convolutional Neural Network 

(CNN), Recurrent Neural Network (RNN), Long Short-Term 

Memory (LSTM), Auto-encoder (AE), among others. ANN is 

one of the most effective methods due to its adaptability to 

large fluctuations caused by changing environmental condi-

tions [7]. CNNs have demonstrated significant effectiveness 

in short-term solar power forecasting. Utilizing temperature 

and solar irradiation as predictors, this algorithm has been 

used to predict the power output of a Photovoltaic (PV) sys-

tem located in Italy, yielding satisfactory prediction results 

with a 10% error value. Lastly, LSTM is a model developed 

from the RNN model with the aim of mitigating RNN’s weak-

nesses. LSTM-based model is particularly effective in dealing 

with time-series data and has demonstrated superior overall 

prediction accuracy for short-term forecasting [8] [9]. 

 

The primary contributions of this paper can be articulated as 

follows: 

1. This paper studies four machine learning algorithms: Ar-

tificial Neural Networks (ANN), Convolutional Neural 

Networks (CNN), Long Short-Term Memory (LSTM) and 

Extreme Learning Machine (ELM). These algorithms are 

configured appropriately, and their results are compared 

to ascertain which algorithm yields the most accurate re-

sults. The comparison of these four algorithms could in-

form enhancements to future forecasting models, thereby 

assisting operators in maintaining power system reliabil-

ity, preserving power quality, and mitigating uncertainty 

in the grid. 

2. This paper aims to understand and apply 4 mentioned ma-

chine learning - based forecasting models to data collected 

from the Nhi Ha solar farm. 

2. Methodology 

2.1. Artificial Neural Network 

Artificial Neural Network (ANN) is a type of machine learn-

ing model that mimics the human brain in information pro-

cessing, problem-solving and self-learning abilities [10]. The 

ANN model presents several advantages, including its capac-

ity to operate effectively with incomplete datasets and the 

ability to retain information throughout the entire network ra-

ther than relying on a database [11]. Nevertheless, it is crucial 

to acknowledge that the ANN is susceptible to overfitting and 

underfitting phenomena, exerting an impact on both the per-

formance and generalization capabilities of the network [11]. 

ANN is composed of several parts mainly: Input layer, Hid-

den layer, and Output layer. The input layer is the first layer 

of nodes in ANN with the mission to receive input data from 

external sources. The hidden layers then take the information 

for processing. The obtained value from the hidden layers is 

sent to the output for further processing to obtain the final re-

sult. The output signal can be expressed as:  

𝑃𝑗 = ∑ 𝑤𝑗𝑘ℎ𝑘
𝑛
𝑘=0    (1) 

Where: 

𝑃𝑗: Represent the output signal 

𝑤𝑗𝑘: Represent the weighted strength of the connection be-

tween the neuron (j) and the hidden layer (k) 

ℎ𝑘: Represent the weighted sum of n signals for each hidden 

layer of k=1,2,3,…,n 

 

 

Figure 1: The structure of an ANN 

2.2. Convolutional Neural Network 

CNN is a type of feed-forward neural network mainly built 

for pattern recognition in images. It is mostly used for Object 

Detection [12], Image Classification [13], Face Recognition 

[14] etc. CNN is utilized in Computer Vision problems where 

data is composed of images passing through some optimiza-

tion function and three layers namely: Convolutional Layer, 

Pooling Layer and Fully connected layer. 

Apart from solving pattern recognition in image and Com-

puter Vision problems, CNN can also be utilized in time-se-

ries forecasting by changing the dimensional structure of the 

input information. 

 

 
Figure 2: The structure of a CNN model 

The following equation shows the output O of CNN calcula-

tion of some elements, where the Convolutional kernel is ma-

trix P. 
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{
 
 
 

 
 
 
𝑜11 = 𝑓(𝛴 𝐽 ⊗ 𝑃 + 𝑏1)
𝑜21 = 𝑓(𝛴 𝐽 ⊗ 𝑃 + 𝑏1)
𝑜31 = 𝑓(𝛴 𝐽 ⊗ 𝑃 + 𝑏1)
𝑜12 = 𝑓(𝛴 𝐽 ⊗ 𝑃 + 𝑏2)
𝑜22 = 𝑓(𝛴 𝐽 ⊗ 𝑃 + 𝑏2)
𝑜32 = 𝑓(𝛴 𝐽 ⊗ 𝑃 + 𝑏2)
𝑜63 = 𝑓(𝛴 𝐽 ⊗ 𝑃 + 𝑏3)

 

}
 
 
 

 
 
 

 (2) 

 

Beyond its advantages, the CNN model necessitates a sub-

stantial volume of data and resources for the training and op-

timization of network parameters. Furthermore, specialized 

hardware is imperative to expedite the computational pro-

cesses associated with CNN, underscoring an additional re-

quirement in its deployment. [15] 

2.3. Long short-term memory 

Recurrent Neural Networks (RNNs) are powerful machine 

learning models that have found use in a wide range of areas 

such as Speech Recognition [16], language translation [17] 

and image captioning problems [18]. When training a RNN 

model, one of the biggest problems is the “vanishing gradi-

ent”. Long short-term memory (LSTM) [19] is a kind of RNN 

that was introduced to deal with the “vanishing gradient” 

problem in conventional RNNs. Furthermore, the LSTM 

model exhibits the capability to capture long-range dependen-

cies and retain information over prolonged durations, render-

ing it well-suited for applications such as natural language 

processing and time series analysis [17]. Nevertheless, it is 

noteworthy that LSTM entails lengthier training periods and 

demands greater memory resources compared to simpler 

models, posing challenges in the context of large-scale appli-

cations [17]. Additionally, the susceptibility of LSTM to over-

fitting is particularly pronounced when confronted with lim-

ited or noisy training data. While dropout serves as a conven-

tional technique to mitigate overfitting, its implementation in 

LSTM is more intricate compared to feedforward networks 

[17]. A LSTM unit is composed of: Forget gates, Input gates, 

the cell and the output gates. The forget gates filter redundant 

information by multiplying the value in the memory cell by a 

number of 0 or 1. The input gates determine which of the input 

values should be used to change the memory. The cell stores 

important information and the output gates control which in-

formation in the cell is kept as input value in the next timestep. 

 

 

Figure 3: The structure of a LSTM unit 

A LSTM block’s mathematical model is presented by as fol-

lows: 

ⅈ𝑡 =  𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)   (3) 

𝑓𝑡 =  𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)   (4) 

𝑜𝑡 =  𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)  (5) 

𝑐𝑡̅ =  𝑡𝑎𝑛ℎ(𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)  (6) 

𝑐𝑡 = (𝑓 ⊗ 𝑐𝑡−1) ⊕ (ⅈ𝑡⊗𝑐𝑡̅)  (7) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝑐𝑡)   (8) 

Where:  

ⅈ𝑡∶ represents input gate 

𝑓𝑡∶ represents forget gate 

𝑜𝑡∶ represents output gate 

ⅈ𝑡∶ represents input gate 

𝜎: represents sigmoid activation function 

𝑤𝑥∶ weight for the respective gate(x) neurons 

ℎ𝑡−1: output of the previous lstm block (at timestamp t-1) 

𝑥𝑡: input at current timestamp 

𝑏𝑥: biases for the respective gates(x) 

𝑐𝑡: cell state at timestamp(t) 

𝑐𝑡̅: represents candidate for cell state at timestamp(t) 

2.4. Extreme learning machine 

ELM is a learning algorithm invented for the purpose of train-

ing single hidden layer feedforward neural network (SLFNs) 

and is known for its fast convergence and promising perfor-

mance [20]. In contrast to the iterative interlayer weight up-

dates in traditional neural network training algorithms, which 

utilize backpropagation, the Extreme Learning Machine 

(ELM) adopts a different approach. The weights connecting 

the input layer and the hidden layer are established through 

random initialization. Subsequently, the weights between the 

hidden layer and the output layer are learned using the least 

squares method. This methodology results in a rapid training 

process during the learning stage and swift inference during 

the testing stage. However, ELM’s randomly assigned hidden 

layer parameters can also lead to overfitting, especially when 

the number of hidden nodes is large compared to the training 

data size [20]. While ELMs offer faster training compared to 

traditional neural networks, they also have less flexibility in 

terms of fine-tuning the model architecture. There is less con-

trol over the specific connections and weights in the hidden 

layer, which can limit the model's ability to capture complex 

relationships in the data [20]. Some applications of the model 

include classification [21] and regression [20] tasks.  

 

For 𝑁  different training data pairs ( 𝑋𝑖 , 𝑌𝑖),  𝑋𝑖 =

|𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑘|
⊤
∈ 𝑅𝑘 is the ELM model input and 𝑌𝑖 =∣

𝑦𝑖1 , 𝑦𝑖2 , … , 𝑦im |
𝑓′∈𝑅𝑚 is the expected model output. If the 

activation function of the ELM with 𝐿 hidden layer nodes is 

𝑔(𝑥), the output function expression of the ELM is shown in 

Eq. (9). 

∑  𝐿
𝑙=1 𝛽𝑙𝑔(𝑏𝐼 +𝑊𝐼 ⋅ 𝑋𝑖) = 𝑂𝑖, ⅈ = 1,… ,𝑁 (9) 

where 𝑏𝑙 is the threshold of the lth node of the hidden layer, 

𝑊𝑙 = [𝜔𝑙1 , 𝜔𝑙2 , … , 𝜔lk]
⊤

 is the weight connecting the input 

layer node and the lth hidden layer node, 𝛽l =

[𝛽11 , 𝛽𝑙2 , … , 𝛽lm]
T

 is the weight connecting the lth hidden 
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layer node and the output layer node, 𝑊𝑙 ⋅ 𝑋𝑖  illustrates the 

inner product of 𝑊𝑙 and 𝑋𝑖 , and 𝑂𝑖 is the output of the EIM 

model. In the ELM model calculation, the model output and 

expected output are equal; therefore, Eq. (10) can be obtained 

as follows: 

∑  𝐿
𝑙=1 𝛽𝑙𝑔(𝑏1 +𝑊𝑙 ⋅ 𝑋𝑖) = 𝑌𝑖, ⅈ = 1,… ,𝑁 (10) 

Eq. (10) is converted into the matrix representation in Eq. 

(11). 

𝐻𝛽 = 𝑌    (11) 

Where: 

𝐻 = [
𝑔(𝑋1 ⋅ 𝑊1 + 𝑏1) ⋯ 𝑔(𝑋1 ⋅ 𝑊𝐿 + 𝑏𝐿)
⋮ ⋱ ⋮
𝑔(𝑋𝑁 ⋅ 𝑊1 + 𝑏1) ⋯ 𝑔(𝑋𝑁 ⋅ 𝑊𝐿 + 𝑏𝐿)

]

𝑁×𝐿

  (12) 

𝛽 = [
𝛽1
𝑇

⋮
𝛽𝐿
𝑇
]

𝐿×𝑚

𝑌 = [
𝑌1
𝑇

⋮
𝑌𝑁
𝑇
]

𝑁×𝑚

   (13) 

In the ELM model parameter training process, if 𝑊‾ 𝑙 , 𝑏‾𝑙, and 

𝛽‾𝑙 can make Eq. (14) hold. 

𝐸 = min𝑊,𝑏,𝛽  ∑𝐿=1
𝑁  (∑𝐿=1

𝐿  𝛽‾𝑙𝑔(𝑊‾ 𝑙 ⋅ 𝑋𝑙 + 𝑏‾𝑙) − 𝑌𝑖)
2
=

min𝑊,𝑏,𝛽 ∥ 𝐻𝛽 − 𝑌 ∥  (14) 

 

Then 𝑊‾ 𝑙 , 𝑏‾𝑙 and 𝛽‾𝑙 are the optimal ELM model parameters. 

In the ELM model, the determination of the input weight (W) 

and the hidden layer threshold (b) results in a unique output 

matrix (H) for the hidden layer. Given these conditions, the 

learning process of the ELM can be reformulated as a linear 

system.  

𝛽‾ = 𝐻−1𝑌    (15) 

Where 𝐻−1 is a generalized inverse matrix.  

2.5. Data preprocessing 

Prior to ingestion by the machine learning models, it is imper-

ative to engage in preprocessing of the dataset. Within the 

context of this study, it is noteworthy that the original dataset 

is devoid of any missing values and manifests a consistent 

sampling interval of 30 minutes.  

Figure 4: The structure of an ELM model 

 
Figure 5: The Interquartile range (IQR) 

Consequently, outlier detection be comes the sole prepro-

cessing step necessary prior to deploying the dataset for fore-

casting purposes. The Interquartile Range (IQR) [22] is em-

ployed as the method of choice for outlier detection in this 

context. 

The range of variations can be described using Figure 5, 

where: 

Median: The central point that divides the dataset into upper 

and lower halves. 

Q1, Q3: The first and third quartiles of the dataset. 

Lower Bound: Q1 – 1.5 * IQR 

Upper Bound: Q3 + 1.5 * IQR 

The Interquartile Range (IQR) is calculated as the difference 

between the first quartile and the third quartile. An outlier is 

identified as a data point lying beyond the range defined by 

the Lower Bound and Upper Bound. Outliers detected are 

then determined to be replaced in the data set depending on 

their roles and importance. 

2.6. Errors metrics 

Error metrics are commonly used for analysis and comparison 

of different models. RMSE and N-RMSE are chosen as the 

metrics to compare the four machine learning models. RMSE 

and N-RMSE are defined using the following formula [23]:   

RMSE = √
∑ (Oi−Ei)

2N
i=1

N
 (16) 

N-RMSE = 
RMSE

O̅
 × 100 (17) 

Where N was the number of validation data, Oi and Ei was the 

actual and estimated power value, respectively. O̅  was the 

mean value of actual power value. In this study, the accuracy 

of the model was considered excellent when N-RMSE < 10%; 

good if 10% < N-RMSE < 20%; fair if 20% < N-RMSE < 

30% and poor if N-RMSE ≥ 30% [23] 

3. Data set 

Table 1: Raw data from Nhi Ha power plant 

No Time Output 

1 6/21/2019 00:00 0 

2 6/21/2019 00:30 0 

3 6/21/2019 01:00 0 

… … … 

62159 1/08/2023 23:00 0 

62160 1/08/2019 23:30 0 
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Figure 6: Output of Nhi Ha solar power plant 

The data utilized in this study was meticulously gathered from 

the Nhi Ha Solar Power Plant, strategically situated in the Ninh 

Thuan province, a region in the southern part of Vietnam. The 

data was collected from 6/21/2019 00:00:00 to 01/08/2023 

23:30:00 with a sample every 30 minutes. Because of this, 

there were a total of 62160 data points. Table 1 describes the 

raw data of the output obtained from the power plant. A visual 

representation of the solar power plant’s output is provided in 

Figure 6 for further elucidation.  

 

The output was recorded in kW. It is noteworthy to mention 

that the majority of deep learning models exhibit sensitivity to 

data scales, necessitating the standardization or normalization 

of the data. In the context of standardization, it is imperative 

that the mean of the data remains constant. Consequently, in 

this study, normalization of the data was executed within a 

range of 0 to 1. 

 

During the application of the Interquartile Range (IQR) 

method for data preprocessing, various descriptive statistics 

were obtained. Specifically, the first quartile (Q1) was found 

to be 0 kW, while the third quartile (Q3) was identified as 

16037.25 kW. The subsequent computation of the IQR re-

sulted in a value of 16037.25 kW, which, in turn, guided the 

determination of the Upper Bound and the Lower Bound at 

40093.13 kW and -24055.88 kW, respectively. 

4. Results and discussion 

4.1. Hyperparameter of the compared models  

The specific hyperparameters of the machine learning models 

were presented in Table 2 and Table 3 The ANN model con-

sists of 2 Dense layers while CNN and LSTM use only 1 

Dense layer. Additionally, CNN uses 1 convolutional layer 

and LSTM use 2 LSTM layer.   

On the other hand, ELM’s hyperparameters include: 

Table 2: Layer configuration for ANN, CNN and LSTM 

Hyperparameter ANN CNN LSTM 

Conv1D - 100 - 

MaxPooling - 2 - 

LSTM1 - - 100 

LSTM2 - - 50 

Dropout 0.2 0.1 0.15 

Dense1 64 50 32 

Dense2 32 - - 

Activation Function ReLU ReLU ReLU 

Table 3: Layer configuration for ELM 

Hyperparameter ELM 

Hidden neurons 100 

Alpha 0.7 

rbf_width 0.3 

Activation Function Sigmoid 

 

The number of hidden neurons, alpha - the mixing coefficient 

for distance and dot product input activations, and rbf_width 

- the multiplier for the radial basis activation function. 

ANN, CNN and LSTM utilize the ReLU activation function 

while ELM uses the Sigmoid activation function. 

4.2. Forecasting result in error metrics 

This section presented a comparative analysis of four ma-

chine-learning algorithms for solar power forecasting: Artifi-

cial Neural Network (ANN), Convolutional Neural Network 

(CNN), Long Short-Term Memory (LSTM) and Extreme 

Learning Machine (ELM). The performance of these models 

was evaluated using two error metrics: Root Mean Squared 

Error (RMSE) and Normalized Root Mean Squared Error (N-

RMSE). The N-RMSE was used to evaluate the overall per-

formance of the models while RMSE was used to compare the 

performance between each model. 

Table 4 summarized the error parameters of the machine-

learning algorithms. Figures 7-12 show the predicted solar 

power for 1, 3, 6, 12, 24 and 48 step forecasting scenarios. 

Overall, using N-RMSE, it is noticeable that the performance 

of each model is relatively well, with excellent accuracy of all 

models in 1 and 3-step forecasting, and good accuracy of all 

models in 6, 12, 24 and 48-step forecasting. Among the 4 

models evaluated, LSTM and ELM demonstrated better per-

formance in terms of accuracy. Conversely, CNN and ANN 

models yielded results that were notably below expectations. 

A close examination of Table 4 reveals that all four models 

had relatively small errors in terms of RMSE and N-RMSE. 

However, LSTM and ELM achieved better accuracy com-

pared to ANN and CNN. For single-step forecasting, ELM 

had the lowest error values among all models, with its RMSE 

being 8.8 kW lower than that of LSTM. ANN and CNNper-

formance was found to be inferior by a small margin when 

compared to LSTM and ELM. The RMSE of ANN was 239.1 

kW lower than the RMSE of CNN, thereby rendering the 

CNN model as the least effective model among the four eval-

uated models when considering single-step forecasting. Fig-

ure 7 illustrated the actual power and the predicted power pro-

duced by the machine-learning algorithms in single-step fore-

casting. 
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Figure 7: Actual power and predicted power of ML models in 1 step 

 

 
Figure 8: Actual power and predicted power of ML models in 3 steps 

 

For multi-step forecasting with 3, 6, 12 and 24 steps ahead, 

the errors of all four models rose gradually, with LSTM over-

took ELM in terms of accuracy, as ELM had higher RMSE 

than LSTM. The RMSE of LSTM were 45.6 kW, 137.6 kW, 

108.9 kW and 65.1 kW lower than the RMSE of ELM for 3, 

6, 12 and 24 step ahead, respectively. Despite small improve-

ments, CNN persistently remained the least accurate model. 

However, it is noteworthy that the disparity in accuracy be-

tween ANN and CNN has been gradually diminishing with 

forecasting that has higher steps. Figure 8-11 illustrated the 

actual and forecasted power output using 4 machine learning 

methods in 3, 6, 12 and 24 steps ahead forecasting.  

Finally, from 48 steps forecasting, the errors of all four mod-

els only increase by a small amount, with the ELM model sur-

passing the LSTM model and emerging as the most effective 

among the four forecasting models under consideration. The 

ELM model outperformed its closest competitor, LSTM, by 

just 7 kW in terms of RMSE. As evidenced by the data pre-

sented in Table 4, the CNN and ANN models continued to 

exhibit worse performance relative to the other models. The 

RMSE of CNN was only a 36.5 kW increase from the RMSE 

of ANN, making ANN the least accurate model when com-

pared to the others model. Figure 12 provided a visual repre-

sentation of the actual and predicted power output as fore-

casted by the different machine-learning methods in 48 steps 

forecasting. 

 
Figure 9: Actual power and predicted power of ML models in 6 steps 

 

 
Figure 10: Actual power and predicted power of ML models in 12 steps 

 

 
Figure 11: Actual power and predicted power of ML models in 24 steps 

 
Figure 12: Actual power and predicted power of ML models in 48 steps  
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Based on the acquired findings, several targeted improve-

ments can be implemented to augment the advantages for grid 

operators and stakeholders. In particular, the forecasting mod-

els developed for 1 and 3-step forecasting can be effectively 

employed to forecast solar power outputs, thereby facilitating 

more accurate management of solar farms. For forecasting in-

volving higher steps, additional efforts will need to be di-

rected toward enhancing the accuracy of the forecasting mod-

els. Consequently, grid operators will experience increased 

ease in efficiently administering and optimizing the power 

grid. Moreover, the results can assist shareholders of solar 

power plants in optimizing their revenues and profits by ena-

bling them to participate in electricity markets, bid for con-

tracts, and avoid financial losses for under or over-production 

of electricity. 

4.3. Forecasting result in training and testing time 

In addition to RMSE and n-RMSE, the training time and test-

ing time of each model may be employed as metrics for com-

parative analysis. The training time denotes the duration re-

quired for model training, while the testing time represents the 

duration for a model to generate output. 

 

As illustrated in Table 5, the LSTM model exhibits training 

and testing times of approximately 14 minutes in all step, and 

5 minutes in all step, respectively.  

 

These outcomes imply that the LSTM model demonstrates the 

lengthiest durations for both training and testing among the 

four models considered. The lengthy training period is one of 

the disadvantages of the LSTM model that has been men-

tioned in [17]. Conversely, the ELM model attains the shortest 

training time, reaching 0.09s at 1, 2, 4 and 48-step and 0.10s 

at 3,6 and 12-step. The model also has the shortest training 

time with the highest only being 0.78s at 48-step. The utiliza-

tion of randomly generated weights in ELM serves to circum-

vent iterative learning processes and mitigates computational 

complexity. Furthermore, the training and testing times for the 

ANN model rank as the second lowest among the models, reg-

istering the highest recorded value of 1 minute and 26.82 sec-

onds at 6-step, and 0.92 seconds at 6-step, respectively. Mean-

while, the CNN model follows the ANN model in terms of 

training and testing times, with the highest durations of 6 

minutes and 57.78 seconds at 48-step, and 1.63 seconds at 24-

step, respectively. 

5. Conclusion. 

Due to the unstable nature of solar power, forecasting of pho-

tovoltaic power output is essential for the operation of grid op-

erators. In this paper, the accuracy of machine learning models 

including ANN, CNN, LSTM, and ELM was compared based 

on RMSE and N-RMSE errors combined with training time 

and testing time. All four machine learning models performed 

well, with minor differences in error rates. The data set had 

low variability, so any of the four methods yielded good re-

sults. However, applying these models to new data sets from 

other case studies would require readjusting and recalculating 

the hyperparameters, reevaluating the forecasting accuracy. To 

achieve better forecasting performance in future research, 

other techniques such as decomposition, hybrid models, or er-

ror correction should be considered. 

 

Table 4: Evaluation of LSTM, CNN, ANN and ELM with error metrics in 1, 3, 6, 12, 24 and 48 steps 

  1 step 3 steps 6 steps 12 steps 24 steps 48 steps 

LSTM 

RMSE 

(kW) 
2671.1 3847.5 4397.0 4716.0 4781.5 4867.1 

N-RMSE 

(%) 
6.5 9.4 10.7 11.5 11.7 11.9 

CNN 

RMSE 

(kW)  
2930.5 4008.7 4605.0 4760.0 4851.9 4898.2 

N-RMSE 

(%) 
7.1 9.8 11.2 11.6 11.8 11.9 

ANN 

RMSE 

(kW) 
2698.6 3900.0 4515.3 4836.4 4894.8 4934.7 

N-RMSE 

(%) 
6.6 9.5 11.0 11.8 11.9 12.0 

ELM 

RMSE 

(kW) 
2662.3 3893.1 4534.6 4824.9 4846.6 4860.1 

N-RMSE 

(%) 
6.5 9.5 11.0 11.8 11.8 11.8 
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Table 5: Evaluation of LSTM, CNN, ANN and ELM with training and testing time in 1, 3, 6, 12, 24 and 48 steps 
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Testing time 00:00.09 00:00.10 00:00.10 00:00.10 00:00.09 00:00.09 
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