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Abstract 
 
Tower cranes find extensive application in the construction, ports, and industrial sectors for efficiently managing the transportation of heavy 

loads. However, operators face potential risks due to oscillations that occur during load movements. This not only diminishes operational 

efficiency but also poses significant hazards. Consequently, the control of tower cranes becomes a formidable challenge. To address this 

issue, various studies have been proposed, with particular attention given to the use of Sliding Mode Control (SMC). Vibrations caused by 

tower cranes have been mitigated by these studies. However, with SMC controllers for tower cranes, the problem of optimal parameter 

selection has not been adequately addressed by existing research. In this paper, a Particle Swarm Optimization (PSO) algorithm is used in 

conjunction with an SMC controller to determine the optimal parameter set for tower crane systems. A hierarchical sliding mode controller 

(HSMC) is utilized to control the position and minimize load oscillations. The PSO algorithm is applied to optimize the position settling time 

and angular deviation of the load. The SMC controller with the obtained optimal parameters achieves superior performance in tower crane 

systems, as demonstrated in simulations and experiments. 
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Symbols 

Symbols Units Description 

𝑚𝑡, 𝑚𝑐 kg Trolley mass and load mass  

R m Trolley position 

γ Degree Jib angle 

α, β Degree Load angles on plane Oxz 

and Oyz 

𝑢𝑡 N Trolley’s control signal 

𝑢𝑟 Nm Jib’s control signal 

l m Rope length 

1 2 3 4

1 2 1 2

,  ,  ,  ,  

,  ,  ,  

   

  K K
 

 

Controller parameter 

Abbreviations 

SMC Sliding Mode Controllers 

HSMC Hierarchical Sliding Mode Controller 

PSO Particle Swarm Optimization 
 

1. Introduction 

Tower cranes are a vital component in the construction of tall 

buildings, massive structures, and complex projects. How-

ever, the crane operation is highly susceptible to the payload’s 

oscillatory movements, which might put workers and equip-

ment at risk. [1]. Typically, suppressing these movements 

calls for a more sophisticated control algorithm. A great vari-

ety of contributions to crane control can be found [2]. The 

proposed methods are mainly divided into two techniques in-

cluding open-loop approaches and closed-loop approaches. 

For open-loop control techniques, there are three widely used 

methods for tower crane systems which are command shaping 

[3], [4], filtering [5], [6], and command smoothing [7]–[9].  

The advantage of these techniques is that they are simple to 

implement in practice, along with low cost. However, the im-

pact of external disturbances such as wind, load changes, etc., 

on the system cannot be avoided. These noise effects cannot 

be eliminated using only open-loop control methods. 

In the case of disturbances, closed-loop control techniques are 

more effective, the position of the load can be precisely con-

trolled, and the system's swing angle can also be quickly sup-

pressed. Regarding closed-loop control techniques, many 

controllers have been applied to tower crane systems such as 

linear control [10]–[14], predictive control [15], [16], adap-

tive control [17]–[20], fuzzy logic approaches [21]–[24], and 

sliding mode control [25]–[27], etc. Among these close-loop 

techniques, sliding mode control – SMC is a well-known 

method owing to its effectiveness, simplicity to implement in 

practice, stability, and robustness, even when the system en-

counters [28]. The efficiency of SMC for vibration suppres-

sion has been proven in [29]–[31]. However, up to now, only 

a few publications have mentioned the methods for selecting 

parameters for the controller as well as evaluating the 
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effectiveness between different sets of parameters for the 

same system. 

This article proposes an approach to designing a position and 

anti-vibration controller for tower cranes, based on the SMC 

method that integrates the following functions: 

▪ A hierarchical structure for the sliding mode controller. 

▪ Employing an optimization algorithm PSO for selecting 

SMC’s parameter to reduce the system’s setting time and 

lower the load’s angle. 

Because the tower crane is an under-actuated system, the hi-

erarchical sliding controller was designed and utilized. In ad-

dition, the PSO algorithm will help to find parameter values 

to achieve the goal of optimizing setup time and reducing load 

swing angle deviation. 

The rest of this paper is organized as follows: Section 2 intro-

duces a dynamic model of a tower crane and details important 

components of this model; Section 3 presents the design of 

the SMC controller, developed for position control and vibra-

tion suppression of tower cranes. This is an important part, 

explaining in detail the SMC sliding control method and how 

to apply it to the tower crane system; Section 4 introduces the 

PSO optimization algorithm to adjust parameters in the con-

troller. This section demonstrates how to apply the PSO algo-

rithm to find optimal parameters for the SMC controller; Sec-

tion 5 presents simulation results on Matlab/Simulink and 

provides results from the experimental model. This is the part 

to evaluates the performance and effectiveness of the pro-

posed method through simulation and experimental results; 

Finally, Section 6 is the conclusion, summarizing the results 

and emphasizing the contributions and limitations of the re-

search, while also suggesting future development directions. 

2. Tower Crane system dynamic 

The physical model of the tower crane illustrated in Figure 1, in-

cludes two motions which are the translation motion of the trolley 

on the jib and the slewing motion of the jib around the tower. The 

cargo mass mc is attached to the trolley through a cable system 

that is responsible for lifting and lowering loads. When a force 

and a torque are acted on the trolley and the jib, the load will vi-

brate due to fictitious force during movement. In this system, 

considering only the translation motion and the slewing motion, 

ignoring the mass of the rope and the elastic deformation of the 

tower, assuming that the load angles are small, and the length of 

the cable stays unchanged, Euler-Lagrange equations are used to 

obtain the dynamics of the tower crane. 

The kinetic energy of the tower crane is calculated as: 

 
2 2 21 1 1

2 2 2
t t c c

K m x m x J= + +  (1) 

where: 

𝑥𝑡̇  is the velocity of the trolley. 

               𝑥̇𝑐  là the velocity of the load.  

𝛾̇ is the angular velocity of the jib. 

The potential energy of the tower crane is determined as: 

 cos coscP m gl  = −  (2) 

From (1) and (2), the Lagrange function is established as: 

2 2 21 1 1
cos cos

2 2 2
  = − = + + +

t t c c cL K P m x m x J m gl  (3) 

 
Figure 1. Tower crane model. 

Corresponding to each state variable, the dynamic equations 

are established [32]: 
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Ignoring the small complicated non-linear components, trigo-

nometric approximations are also used to simplify the calcu-

lations (4), the dynamics model of the tower crane is obtained: 

 
2

(1 )

0

0

c t

t t

t c r

t

m u
R g

m m

m m u
R gR

J J m

l g R

l g R



 

 

  

+ =

+ − =

+ − =

+ + =











 (5) 

The differential equations in (5) describe the variation of state 

variables, including the trolley position R, the rotation angle γ 

of the jib, and the swing angles α and β of the load. The state 

variables depend on the input variables, including the force ut 

acts on the trolley, the torque ur  acts on the jib, and model 

parameters such as mt, l, mc, J, and g. 

In practice, the movement of the trolley R and the jib γ are 

controlled independently by two motors with drivers allowing 

us to control the speed of the trolley and the jib separately, 

accurately, and eliminate the effect of external disturbances. 

Although equation (5) has four state variables, there are only 

two actuators, making the system an under-actuated system. 

We can see that the first and second equations in (5) interact 

with the swing angle state variable α. However, in this study, 

by using motor drivers with ideal current loops and speed 

loops, the influence of angle α on the first two equations can 

be eliminated. Besides, because the inner circuit which is used 

to drive the motors, is much faster than the outer speed circuit, 
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according to [33] we can simplify the first equation. and the 

second of (5) as follows: 

 

1

1
( )

( ) ( 1)
t

FR s

U s s T s
=

+
 (6) 

Where, U(s) is the Laplace transformation of the voltage sig-

nal control the trolley 𝑢𝑡(𝑡) , 𝑅(𝑠)  is the Laplace transfor-

mation of the position of the trolley 𝑟(𝑡), 𝐹1is a gain factor, 

and 𝑇1 is the time constant of the system.  

Inverse Laplace transform equation (6), we have: 

 1

1 1

1
t

F
R R u

T T
+ =  (7) 

Similarly, the model that controls the rotation angle of the jib 

can be expressed as: 

 2

2 2

1
r

F
u

T T
 + =  (8) 

The dynamic model of the tower crane can be rewritten as fol-

lows: 

 1

1 1

1
t

F
R R u

T T
+ =  (9) 

 2

2 2

1
r

F
u

T T
 + =  (10) 

 0l g R + − =  (11) 

 0l g R  + + =  (12) 

It should be noted here that we will design the position and 

angle control by including the motor transmission system, so 

the input control signal has been converted to voltage. In this 

study, we will use equations (9)-(12) to design a controller for 

the tower crane in the next section. 

3. Controller design and control parameter op-

timization  

3.1. Design of the Hierarchical Sliding Mode Controller  

According to the dynamics model (9)-(12), the tower crane is 

an under-actuated system. The purpose of this paper is to de-

sign a controller that drives the trolley and the jib to the de-

sired position and reduces the swing angles of the cargo to 

zero. A hierarchical sliding mode control approach is pro-

posed to control the under-actuated system such as the tower 

crane with 𝑢𝑡 , 𝑢𝑟  are the control inputs and 𝑅, 𝛾, 𝛼, 𝛽 are 

the system state. Designing of the HSMC includes two steps:  

▪ First, a first-order sliding surface is defined to attract 

all state trajectories.  

▪ Then a control scheme is built to force all system states 

to their reference values on the sliding surface. 

Set the system state 𝑅, 𝛾, 𝛼, 𝛽 as state variables as follow: 

 
1 2 1 3 4 3

5 6 5 7 8 7

;  ;  ;  ;

; ; ;   
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= = = =
 (13) 

Define the regulation error vectors as follows: 

 
1 1 1 3 3 3 5 5 7 7

;  ;  ;  = − = − = =
d d

e x x e x x e x e x  (14) 

Substituting (13) into equations (9)-(12) and presenting them 

in the state-space model, one can obtain the state-space model 

of the tower crane as follows: 
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 (15) 

Define the sliding surface as: 

  
1 2

T

S S S=  (16) 

Where: 
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Differentiating equation (16) with respect to time, we have: 
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Next, we choose the constant rate reaching law for the system: 
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Substituting equations (15)-(18) into equation (19), the con-

trol signal can be established as: 
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To reduce the effect of the chattering phenomenon, we replace 

the Sign function with a saturation function as follows: 
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 (22) 

3.2. Stability analysis 

To ensure the stability of the system, as a first step, we choose 

the Lyapunov function V=  
1

2
STS ≥ 0 . Where: 𝑉̇ =

−K1|S1| − K2|S2| ≤ 0  with every K1 > 0 , K2 > 0 . This 

means the system can maintain sliding on the sliding surface 

S = 0. However, for each sliding surface, it is a combination 

of the error between the output value compared to the setpoint 

value and the swing angle of the cargo. Thus, this combination 

doesn't guarantee that all the controlled variables will con-

verge to their references on the sliding manifold. Therefore, 
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we need to consider the system state on the sliding surface. 

Substituting S = 0 into equation (17), then into equation (15). 

Through these transformations, we obtain a space-state model 

represented as follows: 

            Y AY=      (23) 

 

where 𝑌 = [𝑌1 𝑌2 𝑌3     𝑌4 𝑌5 𝑌6]𝑇  with 𝑌1 = 𝑥5 = 𝛼 ; 

𝑌2 = 𝑥7 = 𝛽 ; 𝑌3 = 𝑥6 = 𝑥̇5 ; 𝑌4 = 𝑥8 = 𝑥̇7 ; 𝑌5 = 𝑥1 − 𝑥1𝑑 ;  

𝑌6 = 𝑥3 − 𝑥3𝑑. 
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To guarantee the stability of the system, the linearized state 

matrix A should be Hurwitz (i.e. its eigenvalues are located 

in the left half of the complex plane). After a series of calcu-

lations, the stability conditions are given as: 
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                 (24) 

With the proposed HSMC controller (20)-(21), the perfor-

mance quality of the tower crane not only depends on model 

parameters such as l, and J, but also on the parameters of the 

controller including
1 2 3 4
,  ,  ,      , 

1 2
,     ,

1 2
,  K K . In this 

paper, we propose the use of the PSO algorithm to find the 

optimal parameters for the HSMC controller, with the goal of 

optimizing the settling time and swing angle error of the load.  

3.3. HSMC’s parameter optimization 

In this paper, the PSO algorithm is used to obtain 8 parameters 

𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜂1, 𝜂2, 𝐾1, 𝐾2  of the HSMC controller base on 

fitness function. How this fitness function is defined depends 

on the optimization target of each problem. As mentioned be-

fore, the goal of this research is to reduce the settling time. 

Furthermore, this paper also aims to lower the load’s angle 

when the trolley and jig reach their reference position. From 

those targets, the fitness function for the PSO algorithm in this 

study is chosen as follows: 

 
xl rJ T E= +  (25) 

where 

▪ 𝑇𝑥𝑙 is the 2% setting time of the system. 

▪ 𝐸𝑅 = ∑ (|𝛼(𝑡)| + |𝛽(𝑡)|)∞
𝑡=𝑇𝑥𝑙

 is the sum of swing 

angles after the system has settled.  

▪ μ: weighting factor between T and ⅇ. If μ >1, PSO 

will prioritize for optimizing oscillations suppression. 

Otherwise, with μ <1 PSO will put more effort into 

reducing the settling time. In this article, the value of 

μ is chosen as 0.1. 

The PSO algorithm is population-based optimization, where 

"particles" represent potential solutions. Particles move in the 

search space and interact with each other to search for the best 

location. The best location will correspond to the smallest fit-

ness function value J. 

The optimization will be done by adjusting the controller’s 

parameter. With each set of parameters, the system will have 

a different response. Those responses will be evaluated by the 

fitness function. After many iterations of adjusting parameters 

and evaluating the response, the optimal parameters, which 

have a minimum value of J, are obtained.  

From the works above, the whole control system can be sum-

marized as in Figure 2. 

 

 
Figure 2. Tower crane control system diagram. Note that

1 2 1 3 4 3 5 6 5 7 8 7, , , , , , ,x R x x x x x x x x x x x  = = = = = = = = . 

4. Simulation and experimental results 

4.1. Simulation and experimental setup 

The parameter of the tower crane in this paper is: 𝑇1 =

0.01, 𝑇2 = 0.08, 𝐹1 =
70×2×𝜋×0.016

60
, 𝐹2 =

(
10

11
)×2𝜋 

60
 , 𝑙 =

0.59𝑚, 𝑔 = 9.81
𝑚

𝑠2The starting positions of trolley and jib 

are R = 0 m and 𝛾 = 0°. The reference positions are 𝑅 =
0.3 𝑚, 𝛾 = 45°. The boundary of controller parameters is de-

tailed in (24). Control signal boundary is ±10𝑉 for 𝑢𝑡  and 

±10𝑉 for 𝑢𝑟. 

In the next stage, PSO is started in Matlab/Simulink. First, a 

population of 50 particles is initialized. The maximum itera-

tion is 𝐾𝑚𝑎𝑥 = 100. With the PSO algorithm, the optimal pa-

rameter is obtained after 𝐾𝑚𝑎𝑥  iterations.   

This study is deployed on a tower crane model in the WSR 

laboratory of Hanoi University of Science and Technology. 

The tower crane model’s structure is specified in Figures 3 
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and 4. The tower crane model has 2 moving axes driven by 2 

servo transmission systems. Axis 1 is the rotation of the jib 

controlled by a servo motor accompanied by a high-ratio re-

duction gearbox. The transmission number is 1:11. The other 

axis is the forward motion of the trolley along the jib. The 

trolley is driven by a similar servo motor. Both motors used 

in the experiment are now in speed control mode. The entire 

system is controlled by the NI myRIO 1900 microcontroller, 

Table 1 describes the parameters of the servo motor. Labview 

software is used to program, control, and monitor the system. 

After obtaining the full parameters of the model and controller, 

the research was implemented on system simulation on 

Matlab/Simulink and then on the experimental model. Two 

scenarios are implemented in simulation and experiment to 

compare and evaluate the effectiveness of the parameter set 

that is determined by PSO: 

▪ Scenario 1: The parameter of the SMC controller is 

selected manually. 

▪ Scenario 2: Using the SMC controller parameters 

specified by the PSO algorithm. 

Parameter sets of two scenarios are described in Table 2. 

 

Table 1: Motor parameters 

 Trolley’s motor Jib’s motor 

Rated output 200 W 200 W 

Rated torque 1.27 N.m 1.27 N.m 

Rated Speed 3000 rpm 3000 rpm 

Inertia torque 0.018 ∗ 10−4 𝑘𝑔. 𝑚2 0.018 ∗ 10−4 𝑘𝑔. 𝑚2 

Speed coefficient 70 
𝑟𝑝𝑚

𝑉
 10 

𝑟𝑝𝑚

𝑉
 

 

Table 2: Controller parameters 

SMC SMC-PSO 

𝜆1 = 1  𝜆2 = 0.9 𝜆1 = 1.01  𝜆2 = 0.98 

𝜆3 = 1.1  𝜆4 = -1.5 𝜆3 = 2.196  𝜆4 = -2.07 

𝜂1 = 0.05 

𝜂2 = -0.01 

𝜂1 = 0.05 

𝜂2 = -0.012 

𝐾1 = 25  𝐾2 = 70 𝐾1 = 35  𝐾2 = 75 

 
Figure 3. Experimental diagram. 

 

 
Figure 4. Experimental setup.
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4.2. Simulation results 

The results of the load angles  and β in Figure 5 show that 

with the use of the PSO-SMC controller, the settling time of 

the angles  and β are 2.5 seconds and 6.5 seconds, respec-

tively. Meanwhile, when using the SMC controller without 

optimal parameters, the settling time of angles  and β is 7 

seconds and 8.5 seconds. From these results, we can see the 

anti-vibration effectiveness of the PSO-SMC controller. 

Figure 6 is the result of the position response R of the trolley 

and the rotation angle  of the jib. The results show that when 

applying the PSO-SMC controller, the response time of rota-

tion angle  decreases from 4.2 seconds to 3.51 seconds. This 

result shows that the PSO algorithm has reduced the system 

setup time, as set out in section 4.1. 

The voltage signals controlling the trolley 𝑢𝑡 and the jib 𝑢𝑟 

are depicted in Figure 7, we can see that the PSO-SMC con-

troller helps reduce the fluctuation of the control signal. This 

is achieved thanks to the rapid anti-vibration effect that the 

proposed controller provides.

  
Figure 5. Load swing angle  and β in simulation. 

 

  
Figure 6. Trolley position in the jib and jib rotation angle in simulation. 

 

  
Figure 7. The control signal Ut and Ur in simulation 

Swing angle  in the simulation 
Swing angle  in the simulation 

Ut in the simulation Ur in the simulation 
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4.3. Experimental result 

Experimental results Figure 8 verifies the anti-vibration effec-

tiveness as mentioned in the simulation results above. When 

combining PSO with SMC, the oscillation angles  and β of 

the load are extinguished at the 5th second. Meanwhile, in the 

SMC controller with randomly selected parameters in sce-

nario 1, the oscillation time of angles  and β is up to 11 sec-

onds. Through this, we conclude that the PSO-SMC controller 

brings efficient oscillation suppression. 

Figure 9 is the response of the trolley and jib when deployed 

on the experimental model. The jib settling time changes from 

7.36 seconds to 6.27 seconds when applying the parameter set 

specified by PSO. 

Figure 10 is the experimental result of the voltage signal con-

trolling the trolley 𝑢𝑡 and the jib 𝑢𝑟. Similar to the simulation 

results in Figure 6, when the oscillation phenomenon of the 

control signals 𝑢𝑟 and 𝑢𝑡  of the PSO-SMC controller is min-

imized.

  
Figure 8. Load swing angle  and β in the experiment. 

 

  
Figure 9. Trolley position in the jib and jib rotation angle in the experiment. 

 

  
Figure 10. The control signal Ut and Ur in the experiment. 
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4.4. Evaluation of simulation and experimental results 

From the results of simulation and experiment, we have a ta-

ble of optimal results as shown in Table 3.  

Table 3: Results comparison table. 

 SMC SMC-PSO 

Simulation System settling time 4.2s 3.51s 

 Fitness function value J 4.34 3.53 

Experiment System settling time 7.36s 6.27s 

 Fitness function value J 12.98 7.58 

 

From Table 3, when using only the independent SMC control-

ler, the settling time of the simulation system is 4.2 seconds, 

and the objective function value is 4.34. However, after inte-

grating the PSO algorithm, this settling time is reduced to 3.51 

seconds, and the objective function value is 3.53. In the ex-

perimental results, when using the PSO-SMC controller, the 

system settling time is only 6.27 seconds compared to 7.36 

seconds when using the SMC controller. In addition, the ob-

jective function value is also reduced by 1.76 times. 

Although there is a difference between the experimental and 

simulation results, both results show that the PSO-SMC con-

troller provides higher anti-swinging performance and shorter 

settling time. This difference can be explained by the discrep-

ancy between the real system and its mathematical model. 

5. Conclusion 

This article has presented an anti-vibration control method for 

tower cranes using the SMC sliding controller combined with 

the PSO optimization algorithm. Simulations and experiments 

have been implemented to demonstrate the correctness of this 

control method. After comparing the simulation and experi-

mental results of the proposed controller with the SMC con-

troller, some assessments are drawn including the PSO-SMC 

controller has a faster settling time (respectively 8.32% for 

simulation and 41.22% for experiment), along with the ability 

to suppress load vibrations faster as shown in Figure 4 and 

Figure 8. From these results, the combination between the 

PSO algorithm and SMC controller helps reduce system set-

tling time, while improving anti-vibration efficiency. 

However, the disadvantage of the SMC controller is that the 

system's control signals change too quickly. This phenome-

non is called “Chattering”, which can cause high-frequency 

oscillations that adversely affect the system. Although after 

integrating the PSO algorithm, this phenomenon has been re-

duced thanks to the ability to quickly reduce vibration, the 

problem has not been completely resolved. Therefore, in the 

future, we will consider combining the PSO-SMC controller 

with the input signal shaping method. Finally, the above con-

trol method will also be considered and researched for imple-

mentation in tower crane systems with variable rope lengths. 
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