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Abstract 

 

This paper presents an improved method for a deep learning model applied to the detection of diseases in rice crops. Early detection and 

prevention of pests and diseases are essential to ensure effective crop productivity. The YOLOv8 deep learning model was employed to detect 

three common diseases in rice leaves: leaf folder, rice blast, and brown spot. To enhance the model's performance, we replaced the default 

CIoU loss function in YOLOv8 with WIoU, achieving an overall accuracy of 89.2%, with an improvement of 4.5% on mAP@50 and 4.4% 

on mAP@50-95. These results demonstrate promising potential for improving the performance and reliability of deep learning models in 

agricultural applications. 
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1. Introduction 
Each year, over 700 million tons of rice are produced, with 

90% grown and consumed in Asia [1], including Vietnam. 

Rice is the primary staple food for over half of the global 

population. In Vietnam, the total value of rice exports in 2023 

was around $4.4 billion, which is exported to over 150 

countries worldwide, followed by the higher demand on 

quality day by day. However, rice crops are frequently 

threatened by a variety of leaf diseases such as rice folders, 

brown spot and blast disease which cause severe yield loss. 

Detection and diagnosis of these diseases is essential for 

timely control, helping prevent large-scale crop losses. 

Current practice of disease detection mostly relies on manual 

inspection by clinicians, which is not only time-intensive and 

laborious but also susceptible to human errors and 

inconsistencies. 

The advances in computer vision and deep learning bring 

new frontiers to the field of automatically plant disease 

detection. CNN has been widely used in agricultural research 

for processing and classifying complex image data. One of the 

CNN-based methods is YOLO series where it can make 

predictions on bounding boxes and class probabilities directly 

from full images at once. For example, Detect agriculture 

pests and diseases with low-level features using DCF-

YOLOv8 [2]; tomato detection by a lightweight YOLOv8 [3]; 

Rice Blast detection based on IoT and AI technology [4]. In 

this paper, YOLOv8, one of state-of-art models in the YOLO 

series, has been used in crop disease identification whereas 

YOLO models can achieve better speed with decent object 

detection sensitivity than most other approaches.  

However, there remains room for improvement in 

handling the accuracy of rice leaf disease detection, especially 

in cases involving small or overlapping features. This 

research aims to improve the model result by modifying the 

original YOLOv8 model with the latest loss function Wise-

IoU. [5] Wise-IoU is an advanced version of the Intersection 

over Union (IoU) metric used in computer vision tasks such 

as object detection and image segmentation. Wise-IoU loss 

functions own implementation details that make chance to 

enhance localization accuracy, convergence speed. 

In this paper, we integrate three versions of loss function 

WIoU into YOLOv8 architecture and evaluate how well the 

model performs by inferencing its predictions on an image 

dataset of rice leaf images. The dataset contains three classes 

of common rice leaf diseases: leaf folder, brown spot and blast 

disease; collected under varying environmental conditions to 

improve the robustness and generalization of these models. 

 

2. Proposed method 
2.1. Overview 

YOLOv8 is used to detect 03 diseases that often appear in 

rice leaf: folder disease, blast disease and brown spot with the 

dataset collected from VNUA and internet sources. 

Otherwise, to enhance the accuracy, we experience up-to-date 

loss functions WIoU, including three versions of it and 

compare to the default loss function CIoU in YOLOv8. 

2.2.  Dataset and data preparation 
2.2.1.  Data collection 

    The dataset consists of 3,831 images including 1,831 high-

quality images collected from paddy fields at the Vietnam 

National University of Agriculture (VNU) and 2000 images 

gathered from the internet. The dataset features images of rice 

leaves affected by three types of diseases: rice leaf folder, leaf 

blast, and brown spot. 

The dataset has been validated by expert Mrs. Thu Hong 
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from the Vietnam National University of Agriculture. The 

images from VNU were collected under summer hot weather 

conditions with an average daily temperature of over 33°C 

and an average rainfall of 124mm during a period of 02 

months. 

 
2.2.2.  The final dataset 

   The dataset consists of 3,831 images, labeled as follows: 

0 = rice leaf folder; 1 = leaf blast; 2 = brown spot. Based on 

the size of the dataset and to optimize model performance, the 

dataset is divided into three subsets: training, validation, and 

test, with a ratio approximately of 80-10-10. The training set 

consists of 2,990 images, the validation set contains 422 

images, and the test set also contains 419 images. 

Additionally, the images in the validation set are selected to 

ensure they do not overlap with the images in the training set, 

and the images in the test set are chosen to have no 

relationship with the images in both the training and 

validation sets. 

 

Figure 1: Blast disease 

2.3. YOLOv8 

YOLOv8 is an enhanced version released in 2023 by 

Ultralytics, the company behind YOLOv5. It provides a 

unified framework for training models in object detection, 

segmentation, and image classification. YOLOv8 includes 

five architectural versions: n/s/m/l/x. The YOLOv8n model 

has the fewest parameters, making it the lightest and fastest 

but least accurate, whereas the YOLOv8x model has the most 

parameters, offering the highest accuracy but being the 

heaviest and slowest. YOLOv8 still comprises the backbone 

for feature extraction from input images, the neck for 

aggregating features from the backbone, and the head for 

making predictions. 

 
2.3.1. Backbone 

YOLOv5 [6] employs standard convolutional layers and 

uses the CSPDarknet53 module as its backbone. In contrast, 

OLOv8 incorporates the C2f module (a Cross-Stage Partial 

Bottleneck with dual convolutional layers) instead of the C3 

module (CSPDarknet53) used in YOLOv5. The C2f module 

is an advancement that builds on the ELAN concept from 

YOLOv7, integrating C3 with ELAN to create a more 

comprehensive C2f module. This enables YOLOv8 to 

effectively capture gradient flow information while 

preserving a lightweight structure. The backbone's primary 

components are the C2f and Conv blocks. The C2f block 

consists of a split block, bottleneck block, Conv block, and a 

concatenation layer. The structure of C2f is shown in Figure 

2, with ConvBS is a block composed of a Convolutional 2d, a 

BatchNorm and a SiLU layer. The number of bottleneck 

layers n varies according to the C2f block's position within the 

backbone and the architecture's depth. Specifically, the first 

C2f block has 𝑛 =  3 ×  𝑑 bottleneck layers, while the 

second and third blocks have 𝑛 =  6 ×  𝑑 b layers, and the 

final C2f block has 𝑛 =  3 ×  𝑑 layers. Notably, the feature 

maps from the second and third C2f blocks are combined with 

the head.  

 
Figure 2: Architecture of the C2f module 

2.3.2.  Neck 

YOLOv8 utilizes SPPF (Spatial Pyramid Pooling Fast) in 

the neck to combine features that enhance the ability to 

process spatial information at multiple levels. This process 

integrates features from the backbone and transfers them to 

the head. SPPF is an improvement over the SPP (Spatial 

Pyramid Pooling) technique, designed to boost performance 

and reduce computation time while retaining the benefits of 

SPP. 

One major distinction between SPP and SPPF lies in the 

size of the max-pooling layers. While SPP utilizes varying 

kernel sizes, as previously mentioned, SPPF applies a uniform 

kernel size across all layers. Another key difference is the 

pooling approach - SPP employs three parallel max-pooling 

layers, whereas SPPF arranges them sequentially. This 

sequential execution reduces computational complexity and 

enhances performance, making SPPF considerably faster than 

SPP. 

 

2.3.3. Head 

The YOLOv8 head structure includes key components 

like the Conv Block, C2f Block, Upsample, and Concat. 

Notably, the C2f block in the head lacks shortcuts for the 

bottleneck block. One major improvement in YOLOv8 over 

previous versions is the transition from Anchor-Based to 

Anchor-Free methods.
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Figure 3: Architecture of YOLOv8 

 

Another notable change is the introduction of the 

Decoupled Head. In earlier object detection models like 

Faster R-CNN and previous YOLO versions, both 

localization and classification were processed within the same 

branch of the head. However, this approach presents 

challenges since classification relies on discriminative 

features, whereas localization requires features that capture 

boundary details. This discrepancy, known as task conflict, 

can hinder performance. 

To address this, YOLOv8 separates these tasks into two 

distinct branches, effectively resolving the issue of feature 

mismatches. Additionally, the authors implemented Task 

Alignment Loss (TAL) from the TOOD paper, a labeling 

strategy that enhances anchor alignment. The TAL metric 

used in YOLOv8 is defined by the following equation: 

 

𝑡 = 𝑠𝛼 × 𝑢𝛽                                  (1)

              

where s and u represent the classification score and IoU 

score, respectively. The parameters α and β control the 

balance between these two tasks in the anchor alignment 

index, while t denotes the alignment index. Based on the value 

of 𝑡, the loss function differentiates between positive and 

negative samples for training. 

 
2.3.4. Intersection over Union 

In object detection task, Intersection over Union (IoU) is 

used to evaluate accuracy by measuring the degree of overlap 

between the predict box (anchor box) and the target box 

(ground truth box). 

 

𝐼𝑜𝑈 =
|𝐵∩𝐵𝑔𝑡|

|𝐵|+|𝐵𝑔𝑡|−|𝐵∩𝐵𝑔𝑡|
                         (2) 

ℒ 𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈                      (3) 

𝐵 = (𝑥, 𝑦, 𝑤, ℎ) 𝑎𝑛𝑑 𝐵𝑔𝑡 = (𝑥𝑔𝑡 , 𝑦𝑔𝑡 , 𝑤𝑔𝑡 , ℎ𝑔𝑡) are the 

predict box and target box. Eq. 2 is the IoU loss function. 

However, IoU has the problem that when there is no overlap 

between anchor box and predict box, the gradient disappears. 

Therefore, other parameters cannot be updated.  

Therefore, penalty items are added to solve this situation. 

Thus, the existing IoU-based loss function family  

follow below general form: 

 

ℒ 𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 + ℛ 𝑖(𝐵, 𝐵𝑔𝑡)                 (4) 

Where ℛ 𝑖(𝐵, 𝐵𝑔𝑡) is the penalty item. 

 

 

Figure 4: Visualize different IoU scores 

2.4. Loss function 

As the problem mentioned at the end of section 2.3.4 
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above, loss functions appear to improve the precision of target 

box localization. The loss functions guide the learning process 

by adjusting the model’s weights to minimize the errors it 

makes. This research experiments two different loss 

functions: CIoU and novel loss functions WIoU. 

2.4.1. Complete-IoU 

Complete-IoU (CIoU) is the loss function YOLOv8 

currently ultilizes. Compared to the original IoU loss function, 

CIoU was added distance metrics and aspect ratio, which 

helps overcome the shortcoming of DIoU and GIoU. 

Therefore, it solves the problem of gradient vanishing in 

Error! Reference source not found. as well as improves the 

speed. The equation of CIoU is illustrated as below: 

ℒ 𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝜌2(𝑏,𝑏𝑔𝑡)

𝑐2 + 𝛼𝜈                     (5) 

• 𝑏 and 𝑏𝑔𝑡 represent the central points of 𝐵 and 𝐵𝑔𝑡, 

𝜌(. ) is the Euclidean distance, while 𝑐 denotes the 

diagonal length of the smallest rectangular covering 

anchor box and predict box. 

• 𝛼 is positive trade-off parameter, and 𝜈 describes 

aspect ratio consistency defined as below:  

 

𝛼 =  
𝑣

(1−𝐼𝑜𝑈)+𝑣
                         (6) 

𝑣 =
4

𝜋2 (𝑎𝑟𝑐𝑡𝑎𝑛
𝑤𝑔𝑡

ℎ𝑔𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛
𝑤

ℎ
)

2

                   (7) 

 

Obviously, from Eq. 6  it witnesses that when the 

predicted box matches real box, the aspect ratio is minimized 

(can even equal 0) and has no effect. 

 
2.4.2. Wise-IoU  

In fact, the dataset, especially dataset for plant disease 

inevitably contains many low-quality examples. Using CIoU 

loss function for bounding box regression can negatively 

affect the model’s detection performance. Therefore, to 

address the challenges, Wise-IoU (WIoU) is introduced as a 

replacement for CIoU. Wise-IoU (WIoU) is a dynamic non-

monotonic focusing mechanism (FM) loss function belonging 

to IoU-based loss family. WIoU was designed to eliminate the 

penalty of geometric factors when the predict box overlaps 

target box, then make model generalization better (wiser!). 

WIoU has three versions.  

 

Wise-IoU v1: 

Wise-IoU v1 incorporates two layers of attention ℒ 𝐼𝑜𝑈 

and ℛ 𝑊𝐼𝑜𝑈. ℛ 𝑊𝐼𝑜𝑈 is distance attention and effective to 

removes factor that obstructs convergence. Consequently, the 

novel bounding box loss ℒ 𝑊𝐼𝑜𝑈𝑣1 helps minimize the 

geometric metrics’ punishment as well as improve the 

generalization performance. 

 

ℒ 𝑊𝐼𝑜𝑈𝑣1 = ℛ 𝑊𝐼𝑜𝑈ℒ 𝐼𝑜𝑈                    (8) 

ℒ 𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 = 1 −  (
𝑊𝑔𝐻𝑔

𝑆
)                (9) 

ℛ 𝑊𝐼𝑜𝑈𝑣1 = exp (
(𝑥−𝑥𝑔𝑡)2+(𝑦−𝑦𝑔𝑡)2

𝑊𝑔
2+𝐻𝑔

2 )                (10) 

where 𝑊𝑔 𝑎𝑛𝑑 𝐻𝑔 are the size of smallest rectangular 

covering anchor box and target box. (𝑥, 𝑦), (𝑥𝑔𝑡 , 𝑦𝑔𝑡) 

respectively present the center coordinator of predicted 

bounding box and ground-truth bounding box. 

 

Wise-IoU v2: 

Monotonic FM: In monotonic FM, the gradient gain is 

monotonically related to the IoU value. This ensures that the 

model focuses on more high-quality anchor boxes and gives 

less emphasis to low quality ones. 

Wise-IoU v2 constructs a monotone focusing coefficient 

in order to change the back-propagating. As a result, the 

model can concentrate on challenging examples, enhancing 

classification performance. 

ℒ 𝑊𝐼𝑜𝑈𝑣2 = (
ℒ𝐼𝑜𝑈

∗

ℒ 𝐼𝑜𝑈̅̅ ̅̅ ̅̅ ̅̅
)𝛾ℒ 𝑊𝐼𝑜𝑈𝑣1, 𝛾 > 0               (11) 

 

Where ℒ 𝐼𝑜𝑈
̅̅ ̅̅ ̅̅  is the exponential running average with 

momentum, ℒ𝐼𝑜𝑈
∗  is the gradient gain. We choose 𝛾 = 0.5 

similar to original paper [5]. 

However, WIoU v2 with monotonic FM still shows limit 

and does not fully exploit the information from low-quality 

boxes. 

 

Wise-IoU v3: 

To characterize the quality of predict box, WIoU v3, 

which is still improve from WIoU v1 and v2, adding a non-

monotonic focusing factor 𝑑. The math formula of Wise-IoU 

v3 and its elements are represented as in Eq. 12, 13, 14. 

Dynamic Non-Monotonic Focusing Mechanism: This 

mechanism improves upon monotonic FM by dynamically 

adjusting the focus on each anchor box, considering not just 

the IoU but also its relative position in the distribution of 

anchor box qualities. 

ℒ 𝑊𝐼𝑜𝑈𝑣3 = 𝑑ℒ 𝑊𝐼𝑜𝑈𝑣1                         (12) 

𝑑 =
𝛽

𝛿−𝛼𝛽−𝛿                  (13) 

Where 𝛼 and 𝛿 are hyper-parameters. The outlier degree 

𝛽 is represented as: 

𝛽 =
ℒ𝐼𝑜𝑈

∗

ℒ 𝐼𝑜𝑈̅̅ ̅̅ ̅̅ ̅̅
 ∈  [0, +∞)          (14) 

The magnitude of outlier degree is positive and correlated 

with the quality of predict box. The dynamic ℒ 𝐼𝑜𝑈
̅̅ ̅̅ ̅̅   makes 

quality classification criteria for predict box are also dynamic, 

allow distribution of gradient gain to reach the best fit for 

current situation at any given time. Therefore, WIoU v3 

shows the ability to improve the localization performance. 

3. Result and Discussion 

3.1. Evaluation metrics 

Mean Average Precision (mAP) is a popular evaluation metric 

used in object detection tasks to measure the accuracy of model. 

They help determine how well a model can detect and classify 

objects in an image. For result of this paper, we concern about 

two specific terms mAP@50 and mAP@50-95. 

mAP@50 refers to Mean Average Precision at IoU 

threshold of 50%. Specifically, a prediction is deemed correct 

if the IoU between the predicted bounding box and the ground 

truth box is at least 0.50. The math calculation of mAP@50 is 

represented as below: 

𝑚𝐴𝑃@50 =  
1

𝐶
∑ 𝐴𝑃50(𝑐)𝐶

𝑐=1          (15) 

where 𝐶 is the total number of classes, here in this paper 𝐶=3 

equals to the number of diseases. 𝐴𝑃50(𝑐) is the average 

precision for class c at a threshold of 0.50. 
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mAP@50-95 refers to the Mean Average Precision calculated 

over multiple IoU threshold, ranging from 0.50 to 0.95 with 

step size 0.05. It means unlike mAP@50 (which just evaluate 

model at a single IoU threshold), mAP@50-95 performs the 

average over 10 different thresholds. 

3.2. Result of the method 

In this research, 419 images in test set have 460 diseased 

leaves, which include 173 folder disease leaves, 141 blast 

leaves and 146 brown spot leaves. YOLOv8s is used, other 

hyper-parameters are followed orginial article [5]. We 

conduct experiment training YOLOv8s with orginial loss 

function CIoU, WIoU v1, WIoU v2, WIoU v3 respectively. 

Results received after training 100 epochs with batch size =16 

are shown on the table below: 

Table 1: Performance of each loss function 

Loss function mAP@50 mAP@50-95 

CIoU 0.847 0.545 

WIoU v1 0.841 0.54 

WIoU v2 

(𝛾 = 0.5) 

0.879 (+3.2) 0.571 (+2,6) 

WIoU v3 

(𝛼 = 1.9, 𝛿 = 3) 

0.892 (+4.5) 0.589 (+4.4) 

 

It witnesses the result achieved by applying WIoU v3 

showing the best results. Summary of combined WIoUv3 

model is shown as below: 

Table 2: Model summary 

Disease  mAP@50 mAP@50-95 

Folder 0.913 0.572 

Blast 0.856 0.587 

Brown spot 0.907 0.608 

All 0.892 0.589 

 

 
Figure 5: PR Curve of YOLOv8 with WIoU v3 

Figure 5 presents the Precision-Recall (PR) curve of the 

trained YOLOv8 model with WIoU v3, reflecting its 

performance in identifying diseased regions across different 

confidence thresholds. We visualized predictions in Figure 6 

to demonstrate the model's detection results for Rice Leaf 

Folder, Rice Blast and Brown Spot, respectively. Each image 

highlights the bounding boxes around detected diseased areas, 

illustrating the model's capability to accurately locate and 

classify the different rice diseases. 

 

 
Figure 6: Visualize predictions 

4. Conclusion 

In this research, we implement the application of deep 

learning model into agriculture applications. State-of-art 

model in YOLO series – YOLOv8 is used with some 

modification in loss function. Experiment with the Wise-IoU 

loss function into YOLOv8 achieved 91.3% in folder disease, 

85.6% in blast disease, 90.7% in brown spot and 89.2% 

mAP@50 overall.  Meanwhile, compare to previous research, 

YOLOv5 in article [9] shows the results as 81.6% for blast 

disease and 78.5% mAP@50 for all. Therefore, this article 

leads to quite a prospective method about enhancing 

performance of the model. In the future, we want to enrich our 

dataset for a larger quantity of images and more diseases. 

Moreover, combining with the hardware system helps bring 

better applications into real life. 
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