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Abstract 
 
Beamforming in smart antennas is a highly effective technique that utilizes the flexible adjustment of antenna radiation characteristics, 

including main beam direction, interference nulling, and sidelobe level control. This paper proposes an adaptive beamforming solution based 

on the hybrid optimization algorithm combining Particle Swarm Optimization Grey Wolf Optimizer (HPSOGWO) and Bat Algorithm (BA) 

for Uniform Circular Arrays (UCA). The proposed approach demonstrates the ability to place nulls at interference directions and steer the 

main beam toward the desired direction. The modeling of circular antenna arrays, objective function, and evaluation scenarios will be 

presented. Additionally, the cumulative distribution function (CDF) and signal-to-noise ratio (SNR) will be addressed to assess system 

performance. 

 

Keywords: Uniform circular arrays; Hybrid particle swarm optimization and grey wolf optimizer; Bat algorithm; Adaptive beamforming.

1. Introduction 

In the context of the Fourth Industrial Revolution, the rapid 

advancement of information and communication technology 

has significantly increased the demand for high-performance, 

reliable, and high-speed wireless communication systems. 

Fifth generation (5G) mobile networks are gradually 

becoming the new standard, offering considerable advantages 

in terms of speed, bandwidth, and latency compared to 

previous generations. Furthermore, the continuous expansion 

of wireless devices and the rise of the Internet of Things (IoT) 

present a major challenge: supporting millions of 

simultaneous connections. 
Smart antennas have emerged as a promising solution, 

offering the capability to suppress interference, direct energy 

toward desired directions, optimize spectrum utilization, and 

enhance the overall quality of communication services [1]. In 

smart antenna systems, beamforming is implemented by 

adjusting the phase and amplitude of signals across the 

antenna elements. This technique improves system 

performance by: (i) steering the beam toward the desired 

direction; (ii) suppressing sidelobe levels below a predefined 

threshold; and (iii) minimizing undesired signals in other 

directions (interference) [2], [3], [4]. 
In beamforming, the optimization algorithm plays a crucial 

role in determining the optimal weights for the antenna 

elements. These weights define the radiation pattern and 

directly affect the system's performance. Recently, nature-

inspired optimization algorithms such as Genetic Algorithm 

(GA), Particle Swarm Optimization (PSO), and Bat 

Algorithm (BA) have been widely applied to antenna array 

optimization problems [5–13]. These algorithms are adaptive 

and capable of learning from environmental changes or 

previous search experiences, making them suitable for 

dynamic and complex optimization tasks. Moreover, they 

offer robustness in avoiding local optima and increase the 

likelihood of achieving globally optimal solutions. 
Among these, the Hybrid Particle Swarm Optimization and 

Grey Wolf Optimizer (HPSOGWO) algorithm-which 

combines the strengths of PSO and GWO-has demonstrated 

enhanced stability, faster convergence, and improved global 

search capabilities. While PSO is known for its exploratory 

search driven by particle interactions, GWO excels at 

exploiting solutions by simulating the hunting behavior of 

grey wolves. The hybridization in HPSOGWO effectively 

balances exploration and exploitation, resulting in superior 

optimization performance [5]. 
This paper investigates a beamforming approach for Uniform 

Circular Arrays (UCAs) using nature-inspired optimization 

algorithms, specifically HPSOGWO and BA. The objective is 

to suppress interference and concentrate energy in the desired 

direction-an essential capability for next-generation wireless 

communication systems. The effectiveness of the proposed 

beamformer is validated through its ability to place nulls, 

improve signal-to-noise ratio (SNR), and enhance cumulative 

distribution function (CDF) performance. 

2. Problem Formulation 

2.1. Array Factor  

Uniform Circular Array (UCA) is a structure comprising 

antenna elements arranged in a circular configuration. UCA is 

often used in telecommunications and radar systems due to its 

ability to generate highly directional beams and perform 

omnidirectional angle scanning [2], [14]. The paper considers 

a circular array consisting of N antenna elements, radius a

, placed on the Oxy plane as shown in Figure 1. Array Factor 

of UCA can be written [14],[15]: 
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Figure 1: N-elements uniform circular array. 

2.2. Objective Function 

Radiation pattern synthesis for antenna arrays is an 

optimization problem to determine the optimal location and 

orientation of antennas in an antenna array. A mathematical 

optimization problem is often expressed as: 

minimize/maximize  0 ( )f x  

subject to      ( ) , 1,...,i if x b i I   
(3) 

 

where ( )if x  is the radiation in the interference directions, 

and 0 ( )f x  is the radiation in the remaining (desired) 

directions. 

Mapping the general optimization problem to the circular 

antenna array (UCA) optimization problem involves defining 

the objective function while considering various constraints 

such as main lobe, NULLS, sidelobes. 

One of the ways to solve constrained optimization problems 

is to use the Penalty Method [16]. Therefore, the objective 

function can be written: 
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(4) 

where: 0 ( , )P    is the optimal pattern obtained by the 

optimization algorithms at ( , )  ; 

( , )dP    is a pre-specified radiation pattern at 

( , )  ; 

0 ( , )i iP    is the optimal pattern at ( , )i i  ; 

I is the total of interferences; 

( , )i i  is the 
thi interference direction, 1,2,...,i I  

3. The Proposed Beamformer 

ABF uses an objective function to find a suitable set of 

weights, corresponding to the optimal radiation pattern of the 

array. As a result, the main beam direction is maintained in 

the direction of the SOIs, and the NULLS are placed in the 

direction of the SNOIs. The ABF sets based on the 

metaheuristic algorithm are all implemented through the 

following steps: 

(I) Initialize the initial parameters: Number of antenna 

elements N, Direction of the interference signals, Number of 

loops/Stopping conditions, Radiation pattern of the antenna 

element. Determine the objective function. Map the optimal 

weights to the position of X in the optimization through the 

metaheuristic algorithm. 

(F) Search for the optimal solution based on the metaheuristic 

algorithm. 

(B) Build the array element weights and model the radiation 

pattern. 

Accordingly, the steps applied to develop adaptive 

beamformers based on the HPSOGWO algorithm are shown 

in the block diagram in Figure 2. 

 

 

Figure 2: Beamformer based on HPSOGWO. 

Adjusting the parameters of the algorithm, calculating the 

positions of X1, X2, X3, updating the velocity, calculating the 

X position of the swarm are calculated based on the formulas 

presented in [5]. 
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4. Numerical Results  

This section presents the results obtained after validating the 

proposed beamforming solution through the scenarios: 

convergence characteristics, ability to place nulls at 

interference directions and calculation of CDF and SNR. 

The simulation results were obtained after 200 Monte Carlo 

iterations, running on the same environment (Laptop Intel(R) 

Core(TM) i5-8265U CPU @ 1.60GHz (8 CPUs), ~1.8GHz 

and Pycharm2021). The general parameters for the scenarios 

are as follows: UCA consists of 20 elements, the optimal 

algorithm with 50 populations, and 100 iterations (except 

section 4.1). To satisfy the NULLS setting criteria, the penalty 

parameter value 1500   is chosen. Parameters HPSOGWO: 

1 2 3 0.5;C C C    0.5;w  Parameters for BA: 

min max0.5;  0;  2;A r f f     The parameters used for 

the HPSOGWO and BA algorithms are taken from the 

original studies [5] and [17], which are cited in the reference 

list. 

4.1. Convergence Characteristic  

The convergence rate can indicate whether the optimization 

algorithm is capable of finding a good solution or not. In this 

scenario, authors consider the convergence ability of the 

HPSOGWO algorithm in the cases of placing NULL at 
020   with different numbers of individuals. Figure 3 

gives the details of the objective function values in the cases 

of populations 5, 10, 50, 100 and 500, respectively. 

Where pops = 5 and pops = 10, the objective function value 

decreases rapidly in the first iterations but converges more 

slowly as it approaches the best value and tends to converge 

at higher objective function values, while pops = 50, 100, 500, 

the convergence rate in the first iterations is relatively fast and 

reaches a stable value better. 

However, the number of individuals and the number of 

iterations affect the computation time and computational 

complexity, so the number of iterations is chosen between 100 

and 50 individuals to use for simulating the following 

scenarios. 
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Figure 3: Convergence rate. 

During the simulation, a threshold value is defined at which 

the objective function is considered to have converged. The 

execution times required for convergence by the BA and 

HPSOGWO algorithms are comparable, recorded at 2.68 

seconds and 2.56 seconds, respectively. 

4.2. Ability to set nulls on the pattern 

The proposed beamforming solution is capable of placing 

nulls at interference directions including single interference, 

multiple interference and a broad interference while steering 

main lobe. Figures 4, 5, 6 demonstrate the ability to place 

nulls at single interference 
020   , multiple interference 

0 030 ;48    and a broad interference 
0 0[30 ;50 ]  , 

respectively. 
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Figure 4: A single null pattern. 
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Figure 5: Multiple nulls pattern. 
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Figure 6: A broad null and steering main beam pattern. 

Overall, the efficiency of the beamformer based on the 

optimization algorithm can be seen compared to the reference 

one. In addition, ABF-HPSOGWO (H) shows better NULLS 

placement ability than ABF-BA (B) in all three noisy cases. 
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Details of the nulls depth level and SNR are presented in 

Table 1. 

 

Table 1: Details of the NDL and SNR of scenarios 

 
Single 

null 
Multiple nulls Broad null 

Interference 

directions 
020    030    048   0 0[20 ;40 ]   

N 

D 

L 

(dB) 

H -34.8 -35.8 -77.5 [-53; -32] 

B -32.1 -33.7 -48.4 [-37; -23] 

S 

N 

R 

(dB) 

Ref 9.1 11.9 15.6 

H 34.8 56.65 38.8 

B 32.1 41.05 26.8 

4.3. Cumulative Distribution Function 

Figures 7 and 8 show the cumulative distribution function 

(CDF) of the side lobe level (SLL) for three methods: Ref, 

BA, and HPSOGWO in the case of a single null and a broad 

null (presented in Section 4.2). This function helps to compare 

the performance of the methods in minimizing the side lobe 

level, an important factor in antenna system design and 

optimization. 
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Figure 7: CDF in a single null scenario 
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Figure 8: CDF in a broad null scenario 

Both HPSOGWO and BA optimization methods have similar 

performance in reducing sidelobe levels, but the difference is 

not too significant. At CDF ≈0.5, Ref achieves a lower SLL 

than BA and HPSOGWO. The Ref reference pattern does not 

place NULLS at the interference directions, while the 

radiation pattern based on HPSOGWO and BA algorithms 

completely place NULLS in the cases where interference 

occurs, in exchange for having a sidelobe level exceeding the 

reference pattern. 

The simulation results have demonstrated the high 

performance of the proposal. However, in order to apply this 

proposal in real applications such as 5G advanced antennas 

phased array radar, some future challenges will be addressed: 

Hardware Feasibility: 

Precision and cost: Metaheuristic beamforming designs often 

assume ideal element control. Real-world implementations 

face: (i) Limited phase-shifter resolution; (ii) Nonlinearities 

in power amplifiers; (iii) Calibration errors in antenna arrays 

(especially in UCA). 

Computational complexity: Algorithms like HPSOGWO and 

BA may be computationally expensive for real-time beam 

adaptation. Embedding them in FPGAs or DSPs requires 

optimization or simplification. 

Real-World Signal Environments: 

Multipath fading and NLOS propagation can degrade 

beamforming performance, especially in cluttered urban 

environments. 

Interference: Unlike simulations, real systems face co-

channel interference, which may require adaptive interference 

cancellation. 

Channel estimation errors can reduce the accuracy of 

metaheuristic-optimized beam directions. 

5. Conclusion 

This paper proposed an adaptive beamforming approach for 

Uniform Circular Arrays using a hybrid optimization strategy 

combining HPSOGWO and the Bat Algorithm. The approach 

aims to steer the main lobe precisely while placing nulls in 

interference directions. Simulation results across multiple 

scenarios showed significant improvements in null depth 

level, signal-to-noise ratio, and sidelobe suppression. 

Cumulative distribution function analysis further confirmed 

its effectiveness. Despite the promising results, real-world 

implementation faces challenges such as hardware limitations 

and computational complexity. Future research will focus on 

optimizing algorithm efficiency and robustness under 

dynamic signal environments. The proposed approach shows 

strong potential for advanced wireless communication 

systems, including 5G networks and beyond. 
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