
Journal of Measurement, Control and Automation, Vol 29 (1) (2025) 39-46, ISSN 3030-4555 

Received: 03-02-2025; Accepted: 12-03-2025. 
 

 

Empirical mode decomposition-based OS-ELM for short-term solar irradiance 

forecasting: A case study in Hanoi 
 

Nguyen Thi Hoai Thu1*, Phan Quoc Bao2 

 
1 PGRE. Lab., School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam 

2 School of Informatics, Computing and Cyber security, Northern Arizona University, USA  
*Corresponding author E-mail: thu.nguyenthihoai@hust.edu.vn 

 

Abstract 
 
Solar irradiation forecasting is vital for the growth of renewable energy sources. In this paper, we propose a hybrid model that integrates 

Empirical Mode Decomposition (EMD) and an online sequential extreme learning machine (OS-ELM) for multiple steps ahead forecasting 

of solar irradiation. Initially, the solar irradiation dataset is processed and cleaned. Then, using the EMD model combined with the autocor-

relation function, the cleaned dataset is decomposed into several Intrinsic Mode Functions (IMFs) and white noise, which is removed. Each 

IMF is subsequently predicted using OS-ELM. The final solar irradiation forecast is derived by aggregating the predictions from all Intrinsic 

Mode Functions (IMFs). The model's performance was assessed through forecasting solar irradiation in Hanoi, using weather data from 2018. 

The data was collected at 1-hour intervals and utilized for single-step, 12-step, and 24-step ahead forecasts. The forecasting accuracy of the 

proposed model was compared with four other models, including both single and hybrid approaches: Bidirectional Long Short-Term Memory 

network, ELM, OS-ELM, and EMD-ELM. Two evaluation metrics of RMSE and MAE were used to assess the forecasting performance of 

the models. The computational results show that when the multi-step ahead increases, accuracy decreases. In any case, the proposed method 

outperforms the others, achieving the lowest error rates at 18,01 W/m2 for RMSE and 8,51 W/m2 for MAE at 24-step. 

 

Keywords: solar irradiation, empirical mode decomposition (EMD), online sequential extreme learning machine (OS-ELM), 
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Abbreviations 

EMD Empirical Mode Decomposition 

OS-ELM Online Sequential Extreme Learning 

Machine 

ELM Extreme Learning Machine 

GRU Gated Recurrent Units 

CNN Convolutional Neural Networks 

RNN Recurrent Neural Networks 

IMFs Intrinsic Mode Functions 

ARMA Autoregressive And Moving Average 

ARIMA Autoregressive Integrated Moving Av-

erage 

ML Machine Learning 

DL Deep Learning 

SPG Solar Power Generation 

HHT Hilbert-Huang Transform 

1. Introduction 

With climate change advancing at an alarming rate, many 

countries are actively pursuing alternative energy sources to 

reduce greenhouse gas emissions. In the electricity sector 

globally, the share of renewable energy is projected to rise 

from 30% in 2023 to 46% by 2030, with solar and wind ac-

counting for the majority of this growth [1]. Despite the nu-

merous advantages for solving climate change, several chal-

lenges still need to be addressed. Most renewable power 

sources are heavily dependent on weather conditions, leading 

to instability and fluctuations that pose significant challenges 

for grid integration. Consequently, forecasting systems play a 

crucial role in optimizing the integration of renewable energy 

into power grids. Such systems enhance grid stability by pre-

dicting solar power variability, enabling operators to balance 

supply and demand effectively while reducing reliance on 

costly backup reserves. Accurate forecasts facilitate improved 

energy planning, lower operational costs, and minimize risks 

in energy trading. Moreover, by supporting higher penetration 

of renewable energy, forecasting systems help reduce depend-

ency on fossil fuels, cut greenhouse gas emissions, and con-

tribute to environmental goals. Additionally, they enhance the 

efficiency of renewable systems, improve microgrid reliabil-

ity, and ensure a smoother transition to sustainable energy so-

lutions [2]. As a result, renewable energy forecasting — espe-

cially for wind and solar power — has become increasingly 

popular, with various statistical and machine learning meth-

ods being applied. 

Over the past two decades, statistical methods, along with Ma-

chine Learning (ML) and Deep Learning (DL) techniques, 

have been successfully applied to forecast solar radiation and 

photovoltaic (PV) power. Common statistical methods for so-

lar irradiation forecasting include autoregressive integrated 

moving average (ARIMA) models [3], autoregressive and 

moving average (ARMA) models [4], and regression method 

[5]. These statistical models often yield more accurate short-

term solar irradiation forecasts since they incorporate histori-

cal irradiation data and continuously optimize model parame-

ters. However, they have notable limitations. For instance, the 

time-series data used in AR, ARMA, and ARIMA models 

must be stationary, and developing a regression-based fore-

casting model is challenging due to the need for explanatory 

variables. 

Machine learning, considered as the simplest layer of AI, has 

facilitated the resolution of many complex problems. In the 
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field of forecasting, various machine learning models have 

been proposed, including the extreme learning machine 

(ELM) [6], fuzzy models [7], and support vector machines 

[8]. These models' effectiveness is strongly influenced by the 

proper handling of input data and the accurate extraction of 

data order. However, due to the minimal assumptions that ma-

chine learning methods make about data characteristics, their 

performance is highly contingent on the availability of suffi-

cient, high-quality data. This dependency becomes particu-

larly pronounced when dealing with non-stationary series that 

exhibit seasonality and trends [9]. 

To address the limitations of traditional machine learning ap-

proaches, several deep learning models—such as Convolu-

tional Neural Networks (CNN) [10] or  Recurrent Neural Net-

works (RNN) [11] — have demonstrated promising results in 

solar forecasting. These advanced models typically achieve 

greater accuracy than their machine learning counterparts due 

to their superior data extraction and representation capabili-

ties. Nonetheless, a significant challenge associated with deep 

learning lies in the preprocessing and transformation of data 

into formats suitable for these models. This step is especially 

critical as deep learning architectures are designed to process 

multidimensional data, which often requires substantial adap-

tation to align with the sequential nature of time series data.  

An optimized ELM model developed by Sahu et al. [12] is 

utilized to forecast real-time Solar Power Generation (SPG) 

in the state of Chhattisgarh, India, while accounting for 

weather conditions. The performance of the ELM model is 

improved by fine-tuning key parameters, including weights, 

biases, and the number of hidden layers. This approach neces-

sitates advanced computational techniques capable of effec-

tively handling high-dimensional and complex problems. The 

Online Sequential Extreme Learning Machine (OS-ELM) 

represents a significant advancement over the traditional 

ELM model, offering enhanced capabilities for real-time 

learning and adaptability. In their study, Parida et al. con-

ducted a comparative analysis between a hybrid model com-

bining Empirical Mode Decomposition (EMD) with ELM 

(EMD-ELM) and the OS-ELM model for the purpose of pho-

tovoltaic (PV) power forecasting [13]. The performance of 

these models was evaluated using standard error metrics, in-

cluding Mean Absolute Error (MAE), Root Mean Square Er-

ror (RMSE), and Mean Absolute Percentage Error (MAPE). 

The findings demonstrated that the OS-ELM model consist-

ently outperformed the EMD-ELM hybrid model across these 

metrics, providing superior overall forecasting accuracy. 

Additionally, in order to enhance forecasting accuracy, hybrid 

models are often utilized [14], [15].  A popular approach is to 

combine an effective decomposition method with a strong 

forecasting model, which generally achieves better results 

than using single models alone. Among the decomposition 

methods, common method is EMD, an enhancement of the 

Hilbert-Huang Transform (HHT) is a widely used decompo-

sition technique. EMD decomposes a time series into a set of 

intrinsic mode functions (IMFs) that represent the inherent os-

cillatory modes embedded in the data. Unlike wavelet trans-

form, which operates in the time-frequency domain, EMD 

processes the data entirely in the time domain. This makes 

EMD particularly well-suited for handling non-linear and 

non-stationary time series, as it allows for adaptive decompo-

sition without the need for a predefined basis function. By 

isolating different frequency components in the time series, 

EMD provides a clearer understanding of the underlying dy-

namics and facilitates more accurate forecasting [16].  

In one study, Redekar et al. [17] proposed hybrid models for 

predicting soiling levels and uncertainties affecting photovol-

taic (PV) arrays, utilizing wavelet transform-based support 

vector regression (WT-SVR) and empirical mode decomposi-

tion-based support vector regression (EMD-SVR). Their 

study showed that wavelet transform twin support vector re-

gression (WT-TSVR) and EMD-TSVR significantly im-

proved performance, with EMD-based models excelling in 

computational efficiency and handling random events in soil-

ing-prone environments. Another model, proposed by Reski 

et al. [18], combines a time-varying filter-empirical mode de-

composition (TVF-EMD) technique with an ELM model for 

PV forecasting. By decomposing power data into stable sub-

series, the TVF-EMD-ELM model demonstrated high accu-

racy, achieving a normalized Root Mean Square Error (n-

RMSE) below 4% across diverse Algerian climates. 

With most ongoing solar forecasting research focusing on 

deep learning models with much higher requirements for data 

preprocessing and model training, OS-ELM can be a faster 

and better model with less complexity, offering a simpler and 

more practical solution to forecasting. This research proposes 

a combination of OS-ELM and the EMD decomposition 

method for short-term predictions of solar irradiance. The 

EMD algorithm is first applied to decompose the original da-

taset into 16 smaller IMFs, each exhibiting reduced non-line-

arity compared to the original data. Each IMF is then individ-

ually used as input for the OS-ELM model in the forecasting 

process. Finally, the results from these predictions are com-

bined to generate the complete forecasting output.  

The contribution of this paper is as follows: 

• A hybrid model based on machine learning and sig-

nal decomposition is proposed. This method utilizes 

the signal decomposition ability of EMD with the 

powerful prediction performance of OS-ELM for so-

lar irradiation forecasting. 

• The EMD was used for decomposition, effectively 

decomposed the data into smaller IMF with less non-

linearity, allowing the model to capture the intricacy 

and trend from the data. OS-ELM possessed the abil-

ity to learn data chunk-by-chunk, resulting in ex-

tremely fast convergence with great generalization 

ability. 

• To evaluate performance, four additional models —

ELM, EMD-ELM, Bi-LSTM, and OS-ELM — are 

used for comparison. The models are assessed for 

both 1-step and 24-step forecasting using MAE and 

RMSE as evaluation metrics. 

The next section outlines the foundational methodologies, in-

cluding the EMD decomposition process, the forecasting ap-

proaches using OS-ELM, and the framework for the proposed 

hybrid model. Section 3 presents the prediction results and 

corresponding discussion. The original dataset was divided 

into training and testing subsets with an 80:20 ratio, and the 

accuracy of the proposed model was evaluated using 1-step, 

12-step, and 24-step forecasting. Lastly, Section 4 summa-

rizes the conclusions of this study. 
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2. Methodology 

2.1. Empirical Mode Decomposition (EMD) 

The empirical mode decomposition (EMD) [19] is a time-fre-

quency analysis method that adaptively decomposes complex 

signals, including nonlinear and non-stationary signals. The 

EMD method breaks down a given signal X(t) into Intrinsic 

Mode Functions (IMFs), each possessing more stationary 

characteristics than the original data. The mathematical for-

mulation of this decomposition is as follows: 

𝑋(𝑡) = ∑ 𝐶𝑗(𝑛) + 𝑅𝑛
𝑛
𝑗=1   (1) 

where,  𝐶𝑗(𝑛) represents the jth IMF component and 𝑅𝑛  de-

notes the residual portion of the original dataset after extract-

ing 𝑛 IMFs. Each IMF exhibits distinct amplitude and fre-

quency characteristics but retains fundamental properties. The 

resulting IMFs contain an equal count of extrema and zero-

crossings, which may differ from those in the initial dataset. 

At any given data point, the mean of the envelope is deter-

mined by local maxima, while the envelope based on local 

minima is considered zero. 

Figure 1 illustrates the step-by-step process of this method. In 

this figure, the process begins with an input signal 𝑥(𝑡) , 

where local extrema are identified to construct upper and 

lower spline envelopes. The mean of these envelopes, 𝑚𝑘(𝑡), 

is subtracted from the signal to obtain a candidate function 

𝑑𝑘(𝑡). If 𝑑𝑘(𝑡) satisfies the conditions of an IMF — having 

nearly equal zero crossings and extrema, with a local mean of 

zero — it is extracted as 𝑐𝑛(𝑡). Otherwise, the process iterates 

until an IMF is obtained. The residual signal, 𝑟𝑛(𝑡), is then 

computed by subtracting the sum of extracted IMFs from the 

original signal. If the residual remains oscillatory, the decom-

position continues; otherwise, if it is monotonic, the process 

stops, and the signal is reconstructed as the sum of IMFs and 

the residual. 

 

 

Figure 1: The flowchart of EMD method 

2.2. Extreme Learning Machine (ELM) 

The Extreme Learning Machine (ELM) is a novel model for 

training single-hidden layer feedforward neural networks 

(SLFNs) [20]. It works by randomly selecting hidden nodes 

and then determining the output weights analytically. Intro-

duced by Huang et al. [21]., ELM is recognized for its sim-

plicity and efficiency. Unlike traditional neural networks that 

iteratively adjust hidden layer parameters, ELM initializes the 

hidden layer weights and biases randomly, while the output 

weights are computed using a least-squares solution. This 

method significantly reduces both computational complexity 

and training time. ELM excels in handling large datasets with 

high-dimensional features while maintaining strong 

generalization capabilities, making it a popular choice for 

tasks such as classification, regression, and function approxi-

mation. 

For generalized SLFNs the output function of ELM is written 

as the following equation (2): 

𝑓𝐿(𝑥) = ∑ 𝛽𝑖ℎ𝑖(𝑥) = ℎ(𝑥)𝛽𝐿
𝑖=1   (2) 

where 𝛽𝑖 = (𝛽1,  𝛽2, … , 𝛽𝐿) is the output weights vector be-

tween the output neurons (𝑚 ≥ 1) and L hidden layer neu-

rons, ℎ(𝑥) = [(ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝐿(𝑥))] is the hidden layer 

output function with respect to x. 

2.3. Online Sequential Extreme Learning Machine (OS-

ELM) 
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While ELM provides rapid learning capabilities, it has certain 

limitations. Specifically, an excessively large number of hid-

den neurons can lead to overfitting. Moreover, when dealing 

with complex data sequences, ELM may produce substantial 

prediction errors. 

The Online Sequential Extreme Learning Machine (OS-ELM) 

[22] is an enhanced variation of ELM designed to address 

such challenges, particularly in scenarios where data arrives 

in a sequential or real-time fashion. Unlike the standard ELM, 

which requires the entire dataset to be available before train-

ing, OS-ELM has the ability to learn data chunk-by-chunk or 

one-by-one. This feature makes it particularly well-suited for 

real-time forecasting. 

OS-ELM preserves the key advantages of ELM, including 

rapid training and high accuracy, while adding the ability to 

process continuously evolving data streams. It utilizes online 

learning algorithms to update the model with minimal com-

putational complexity, enabling adaptive and efficient learn-

ing in dynamic environments. Due to its scalability and ability 

to handle large, time-sensitive datasets, OS-ELM is a valuable 

tool for applications such as forecasting, classification, and 

pattern recognition [23]. Figure 2 presents an illustration over 

the framework of OS-ELM. 

 

Figure 2: Illustration of OS-ELM structure 

The structure of OS-ELM can be described as follows: 

Initially, a small batch of training data, denoted as ℵ𝟎 =

{(𝒙𝒊, 𝒕𝒊)}𝒊=𝟏
𝑵𝟎  is selected for model initialization. This batch 

must satisfy the condition 𝑵𝟎 ≥ 𝑳 , where 𝑳  represents the 

rank of 𝑯𝟎. The initialization process consists of the follow-

ing steps: 

Step 1: Randomly assign parameter values. 

Step 2: Compute the initial hidden layer output matrix 𝐻0.  

Step 3: Estimate the initial output weight β(0)
 using the equa-

tion: 

β(0) = 𝐏𝟎𝐇𝟎
𝐓𝐓𝟎 (3) 

where P0 is derived from (𝐇𝟎
𝐓𝐇𝟎)

−𝟏
 and 𝐓𝟎 is represented as 

[𝐭𝟏, … 𝐭𝐍𝟎
]

𝐓
. 

Step 4: The initial chunk index is set to zero (k=0). During the 

sequential learning phase, the model processes new batches of 

data incrementally, where each new chunk at step 𝒌 + 𝟏 is 

given by: 

ℵ𝐤+𝟏 = {(𝐱𝐢, 𝐭𝐢)}
𝐢=∑ 𝑵𝒋+𝟏𝒌

𝒋=𝟎

∑ 𝑵𝒋
𝒌+𝟏
𝒋=𝟎

 (4) 

2.4. The proposed model 

The proposed model utilized data pre-processing, decomposi-

tion, and forecasting techniques to significantly enhance the 

accuracy of predictions in complex time-series data. The pro-

posed model structure is illustrated using Figure 3. The pro-

cess begins with data pre-processing, where the raw time-se-

ries data undergoes EMD. EMD is a powerful technique that 

breaks down non-linear and non-stationary data into simpler 

components called IMFs along with a residual component 𝑅𝑛. 

This decomposition isolates the various oscillatory modes 

within the data, effectively simplifying the complex time-se-

ries and enabling more focused analysis. By breaking the data 

into IMFs, the model can separately analyze distinct patterns 

and frequencies, improving the accuracy of subsequent fore-

casts. 

Following this, each IMF is forecasted independently using 

OS-ELM, a highly efficient machine learning algorithm opti-

mized for real-time data processing. OS-ELM is particularly 

well-suited for sequential learning, as it can update model pre-

dictions as new data becomes available without significantly 

increasing computational costs. At this stage, the residual 

component Rn is excluded from the forecasting process, al-

lowing the model to focus on the patterns within the IMFs 

without being distracted by long-term trends or noise. This 

separate forecasting of each IMF ensures that the model accu-

rately captures the behavior of distinct data components, thus 

maximizing prediction accuracy. After the forecasting results 

from each IMF are obtained, they are recombined to produce 

the final prediction. 
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Figure 3: Construction of the proposed model 

By combining EMD for data decomposition and OS-ELM for 

efficient forecasting, this hybrid model produces robust and 

reliable results for complex time-series data. As illustrated in 

Figure 3, the approach is particularly effective for handling 

non-linear, non-stationary datasets, which often pose chal-

lenges for traditional forecasting methods. 

2.5. Evaluation metrics 

In this study, Mean Absolute Error (MAE) and Root Mean 

Square Error (RMSE) and are used to accurately assess the 

performance of the proposed model compared to other com-

parison models. The equations below illustrate the formula for 

the metrics: 

MAE =
∑ |Ai−Fi|N

i=1

N
 (5) 

RMSE = √∑ (Ai−Fi)2N
i=1

N
 (6) 

Where N is the number of sample data, Ai is the actual value, 

A̅ is the mean of the actual value and Fi is the estimated value  

3. Results and Discussion 

3.1. Data acquisition 

The dataset utilize for this research is the weather data of Ha-

noi in 2018, acquired from Hanoi Meteorological Company. 

The GHI variable is picked among the variables presented in 

the dataset for solar irradiance forecasting. The interval 

between each data point is 1-hour, which results in 8000 data 

points in a span of 1 year. To better illustrate the dataset  Fig-

ure 4 was drawn using the original weather dataset.  

3.2. Data analysis 

3.2.1. Data pre-processing 

Before being decomposed using EMD, the dataset must be 

preprocessed. In this paper, two formulas (5) and (6) are uti-

lized for handling missing values and outliers of the dataset. 

The formulas are presented as follows: 

F(xi,t) = {

xi,t−1+xi,t+1

2
, xi,t ∈ NaN

xi,t, else
 (8)  

F(xi,t) = {
avg(xi,t) + 2σ(xi,t), if xi,t > xi,t

∗

xi,t,                  else
 (9) 

where xi,t  is the solar irradiation value at hour i , xi,t
∗  is 

computed by the mean avg (∙) and the standard deviation 

σ(. )  for each time interval.  

3.2.2. Data decomposition 

As mentioned in the methodology section, the EMD tech-

nique was used to decompose the preprocessed historical data 

into multiple components. The decomposition process re-

sulted in 16 IMFs along with a residual component, as demon-

strated in Figure 5. The residual is considered noise and ex-

cluded from the training process to increase efficiency. 

 

Figure 4: Visualization of the original dataset 
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3.3. Forecasting results and evaluations 

3.3.1. Forecasting model parameters 

The parameters for the EMD-based comparative models 

(ELM, OS-ELM and EMD-ELM) with the proposed model 

(EMD-OS-ELM) can be listed as follows: 

Table 1: Proposed model parameters 

Models 

Parameters 

nDim 

Input 

nDim 

Output 

Num 

Neu-

rons 

lamb 
output-

WeightFF 

ELM-

based 

models 

numLags 1 50 0,0001 0,99 

In these models, nDimInput represents the parameter indicat-

ing the number of input dimensions or features in the dataset. 

The variable numLags denotes the number of time lags or his-

torical observations used as input features for the model. This 

approach, commonly used in time-series analysis, utilizes 

lagged values to capture temporal dependencies in the data. 

The parameter nDimOutput defines the number of output di-

mensions, which is set to 1 in this case. This indicates that the 

model is designed for univariate output, predicting a single 

value at each time step. 

The variable numNeurons specifies the number of neurons in 

the hidden layer of the neural network. With a value of 50, the 

model employs 50 nodes in its hidden layer, which are respon-

sible for learning and extracting patterns from the input data. 

Finally, the parameter lamb (lambda), the regularization fac-

tor, is set to 0,0001 to reduce the risk of overfitting by con-

trolling the model's complexity and ensuring better generali-

zation. Lastly, outputWeightFF is assigned a value of 0,99, 

representing the forgetting factor of the model. 

The parameters of the three ELM-based models were chosen 

the same as the proposed model, while the BiLSTM’s was set 

as default with 2 LSTM layers with 128 and 64 units. 

a. Single and hybrid models: 

The comparison between individual models (ELM, Bi-LSTM, 

OSELM) and hybrid decomposition-based models (EMD-

ELM, Proposed) reveals the following insights: Decomposi-

tion-based models consistently outperform individual models 

due to their ability to simplify the data by breaking it into 

more manageable components. The proposed model signifi-

cantly outperforms EMD-ELM across all prediction steps, 

demonstrating the added value of the optimized structure 

(EMD-OS-ELM). For instance, in 1-step prediction, the 

RMSE reduction between EMD-ELM and the Proposed 

model is approximately 19,57 W/m², and in 24-step predic-

tion, it increases to 30,15 W/m². This highlights the proposed 

model’s greater capacity to handle complex datasets and 

maintain accuracy over longer horizons. 

 

 

Figure 5: 16 IMFs produced using EMD on the dataset 

b. Forecasting steps: The accuracy of all models varies sig-

nificantly with the number of forecasting steps (1-step, 12-

step, and 24-step). 

All models perform the best at 1-step predictions due to the 

reduced complexity and lower uncertainty associated with 

short-term forecasting. The Proposed model achieves remark-

able accuracy (RMSE = 8,98 W/m² and MAE = 4,88 W/m²), 

which is significantly better than the second-best model, 

EMD-ELM (RMSE = 28,55 W/m², MAE = 24,87 W/m²). Er-

rors are relatively low for all models, but the advantage of hy-

brid models (EMD-ELM and Proposed) becomes evident. 

As the forecasting horizon extends, all models experience an 

increase in errors due to the accumulation of uncertainties 

over time. The proposed model continues to deliver the lowest 

errors (RMSE = 12,75 W/m², MAE = 6,49 W/m²), 
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maintaining its superiority over EMD-ELM (RMSE = 32,79 

W/m², MAE = 30,60 W/m²). The RMSE difference between 

the Proposed and EMD-ELM models increases to 20,04 

W/m², indicating the proposed model's resilience in medium-

term forecasting. 

24-step forecasting results introduce the greatest challenges 

due to compounding uncertainties. Errors increase for all 

models, but the Proposed model remains the most accurate, 

with RMSE = 18,01 W/m² and MAE = 8,51 W/m². The dif-

ference in RMSE between the Proposed and EMD-ELM mod-

els grows further (30,15 W/m²), showing the Proposed mod-

el's robustness in handling long-term predictions. Errors for 

non-hybrid models (ELM, Bi-LSTM, OSELM) rise sharply, 

demonstrating their limitations in capturing the complexity of 

long-term time-series data. 

In conclusion, hybrid decomposition-based models (EMD-

ELM and Proposed) consistently outperform individual mod-

els, with the Proposed model being the most effective overall. 

The Proposed model demonstrates superior accuracy and ro-

bustness, with smaller errors across all forecasting steps, par-

ticularly excelling in long-term forecasting where other mod-

els struggle. This underscores the importance of integrating 

decomposition techniques to enhance forecasting perfor-

mance. 

 

 

Figure 6: Time-series forecasting results comparison (24-step forecasting) 

Table 2: Accuracy evaluation of the forecasting models on the seasonal datasets 

Forecasting Step Evaluation Criteria 
ELM Bi-LSTM OSELM EMD-ELM Proposed 

1-Step 
RMSE (W/m2) 56,88 42,99 51,87 28,55 8,98 

MAE (W/m2) 49,50 34,50 37,55 24,87 4,88 

12-Step 
RMSE (W/m2) 76,23 57,79 73,98 32,79 12,75 

MAE (W/m2) 56,90 42,46 46,17 30,60 6,49 

24-Step 
RMSE (W/m2) 86,63 63,71 80,50 48,16 18,01 

MAE (W/m2) 63,98 50,94 53,52 42,39 8,51 

4. Conclusion  

In this study, a decomposition-based solar irradiation fore-

casting model utilizing Online Sequential Extreme Learning 

Machine (OS-ELM) networks was developed. The model 

aims to enhance the accuracy and reliability of solar irradia-

tion forecasts by integrating data decomposition and machine 

learning techniques. The original solar irradiation data was 

first preprocessed and decomposed into multiple Intrinsic 

Mode Functions (IMFs) using Empirical Mode Decomposi-

tion (EMD). This decomposition helps isolate various oscilla-

tory components within the data, allowing the model to cap-

ture different underlying patterns. During this step, any white 

noise present in the original data was identified and removed, 

further improving the quality of the input data for forecasting. 

Subsequently, the OS-ELM network was employed to train 

and forecast each IMF independently. OS-ELM's ability to 

handle data in a sequential manner made it particularly well-

suited for this task, enabling efficient real-time forecasting. 

The forecasting performance was evaluated using two crite-

ria: Root Mean Square Error (RMSE) and Mean Absolute 

Error (MAE). These metrics provided a comprehensive as-

sessment of the model’s accuracy and error minimization 

across different data patterns. 

The results demonstrated that the hybrid decomposition 

method significantly outperformed other single forecasting 

models. At the 1-step forecasting horizon, the proposed model 

achieved an RMSE of 8,98 W/m² and an MAE of 4,88 W/m², 

surpassing all other models. Similarly, for 24-step forecasting, 

the proposed model attained an RMSE of just 18,01 W/m², 

outperforming the second-best model (EMD-ELM) by a mar-

gin of 30,15 W/m². By combining EMD for data prepro-

cessing and decomposition with the OS-ELM for forecasting, 

the proposed model achieved the best performance with min-

imal errors across all evaluation criteria. This indicates that 

the model is highly effective at capturing complex, non-linear 

patterns inherent in solar irradiation data, leading to more ac-

curate and reliable forecasts compared to traditional methods. 

It should be noted that applying this method to other case stud-

ies or datasets would require modifications to account for dif-

ferences in climate and geographical properties. Future work 

can involve testing this model in a variety of case study to test 
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its effectiveness under more conditions or combining this 

technique with other better decomposition algorithms to im-

prove its effectiveness. 
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