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Abstract 
 
Fish classification and disease detection are crucial for sustainable aquaculture, necessitating accurate and efficient vision models. This study 

introduces FISH-YOLOV8, an enhanced YOLOv8 variant, incorporating: (1) SPD-Conv for optimized feature extraction and reduced 

computational load; (2) BiFormer Attention for enhanced small object detection and occlusion management; (3) dynamic IoU-threshold NMS 

to minimize false positives. This Article states that, evaluated on 15,162 images, FISH-YOLOV8 attains a mAP@50 of 0.990 and a 

mAP@50:95 of 0.859, outperforming baseline YOLOv8 and advanced models such as YOLOv11, at 45 fps, supports effective real-time 

aquaculture monitoring. 
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Abbreviations 

BRA Bi-level Routing Attention 
C2f Coarse to Fine 
CC BY 4.0 Creative Commons Attribution 4.0 
CIoU  Complete Intersect over Unit  
CNN Convolutional Neural Network 
CSP Cross Stage Partial 
DFL Distribute Focal Loss 
EUS Epizootic Ulcerative Syndrome 
FLOPs Floating Point Operations per Second 
FN False Negatives 
FP False Positives 
fps Frames per Second 
IoU Intersection over Union 
LCE Local Context Enhancement  
LSTM Long Short-Term Memory 
mAP Mean Average Precision 
mAP@50 Mean Average Precision at IoU 0.5 
mAP@50:95 Mean Average Precision at IoU 0.5 to 0.95 
mm Matrix Multiplication 
NMS Non-Maximum Suppression 
SPD-Conv Space-to-Depth Convolution 
SPPF Spatial Pyramid Pooling - Fast 
SSD Single Shot MultiBox Detector 
TP True Positives 
VFL  VariFocal Loss 
YOLO You Only Look Once 

 

1. Introduction 

Object detection in computer vision has advanced 

considerably, facilitating applications such as fish 

classification and disease detection in aquaculture. These 

methods are categorized into two-stage detectors (e.g., Faster 

R-CNN [1], which generate and classify region proposals 

sequentially) and one-stage detectors (e.g., YOLO [2], SSD 

[3], which predict bounding boxes and classes in a single 

step). While two-stage detectors provide high accuracy at a 

significant computational cost, one-stage detectors 

emphasize speed, rendering them ideal for real-time tasks 

such as aquaculture monitoring. In fish disease diagnosis, 

accurately detecting small or occluded fish in complex 

underwater conditions (e.g., turbid water, variable lighting) is 

essential for early intervention and sustainable farming. 

The YOLO family, introduced by Redmon et al. [2], has 

become a cornerstone for real-time Object Detection. 

YOLOv1 (2016) unified detection into a single network, 

achieving 45 fps but with limited accuracy. YOLOv3 (2018) 

introduced multi-scale predictions, improving small object 

detection. YOLOv5 (2020) and YOLOv8 (2023) [4], 

developed by Ultralytics, enhanced accuracy and efficiency, 

with YOLOv8 achieving a strong balance (e.g., 48 fps, 

mAP@50 of 91.7% on COCO). YOLOv11 [5], released in 

2024, further improves accuracy (mAP@50: 99.2%) but at 

the cost of speed (40 fps) and increased parameters (30.2M 

vs. YOLOv8’s 25.9M). We chose YOLOv8 as the base model 

for FISH-YOLOV8 due to its optimal speed-accuracy trade-

off, established adoption in 2023, and open-source support, 

making it practical for real-time aquaculture applications. 

Non-YOLO models like Faster R-CNN [1] offer high 

accuracy (mAP@50: 92.0%) but are slower (15 fps), while 

SSD [3] is faster but less accurate (mAP@50: 85.0%) than 

YOLOv8, particularly for small objects in underwater 

settings. Detailed comparisons with these models are 

presented in Table 5 (Section 3.4). 

Recent studies on fish classification highlight these 

challenges. Rauf et al. [6] proposed a 32-layer CNN based on 

VGGNet, achieving 96.94% accuracy on the Fish-Pak dataset 

[7]. Abinaya et al. [8] used a multi-stage AlexNet approach, 

achieving 98.64% accuracy on Fish-Pak. Xu et al. [9] 

employed SE-ResNet152, reporting 98.80% accuracy, while 

mailto:daohaoquang@gmail.com
https://doi.org/10.64032/mca.v29i2.279


66 Journal of Measurement, Control, and Automation 

 

Shammi et al. [10] CNN achieved only 88.96%. Banerjee et 

al. [11] developed a Deep Convolutional Autoencoder for 

carp classification (97.33% accuracy), Ahmed et al. [12] used 

a CNN with LSTM (97% accuracy), and Gong et al. [13] 

applied vision transformers (98.34% accuracy). Despite these 

advancements, underwater fish detection remains challenging 

due to small, low-resolution objects, water turbidity, and 

occlusions, necessitating robust algorithms. 

This study proposes FISH-YOLOV8, an enhanced YOLOv8 

model, to address these issues. We introduce: (1) the SPD-

Conv module to improve feature extraction in low-resolution 

underwater images, (2) BiFormer Attention to enhance small 

object detection and handle occlusions, (3) a 160×160 

detection layer to improve sensitivity to small targets, and (4) 

a novel dynamic IoU threshold in NMS to reduce false 

positives. Evaluated on a large-scale dataset from Roboflow 

Universe [14], FISH-YOLOV8 demonstrates superior 

performance compared to baseline YOLOv8 and competing 

models, offering a practical solution for real-time aquaculture 

monitoring. Detailed results and comparisons are presented 

in Section 3. 

Primary contributions: 

• Replaced YOLOv8s’s convolution module with SPD-

Conv to enhance feature extraction in underwater images. 

• Integrated BiFormer Attention to improve small object 

detection and handle occlusions. 

• Added a 160×160 detection layer to enhance sensitivity to 

small targets, optimizing multi-scale feature fusion. 

• Proposed a dynamic IoU threshold in NMS to reduce false 

positives in high-density environments. 

2. Methodology 

2.1 Dataset 

The dataset, sourced from Roboflow Universe [14], 

comprises 15,162 annotated images of fish species and 

diseases, licensed under CC BY 4.0. It encompasses 14 

classes: Blackchin tilapia, Catfish, EUS (including 

hemorrhagic symptoms), Eye disease, Fin lesions, Giant 

gourami, Jullien’s golden carp, Mozambique tilapia, Nile 

tilapia, Red tilapia, Rotten gills, Silver barb, Snakehead 

murrel, and Snakeskin gourami. These images, obtained from 

complex underwater settings, exhibit noise including turbid 

water, multiple fish, small objects (<32×32 pixels), and 

variable lighting (e.g., reflections, shadows). 

 

    

    

    

(a) (b) (c) (d) 

Figure 1: Sample images from the dataset; (a) Turbid water with multiple fish; (b) Small fish (<32×32 pixels) with occlusions; (c) Lighting noise 

(reflections and shadows); (d) Fish with showing hemorrhagic symptoms. 

The dataset was split into training, validation, and test sets, 

ensuring a balanced representation of classes. Table 1 

summarizes the split, and Table 2 details the number of 

samples per class, focusing on disease classes to assess 

recognition quality. 

To enhance model robustness, data augmentation techniques 

were applied, including rotation, scaling, random occlusion, 

horizontal flipping, noise addition, jitter, hue adjustment, 

saturation adjustment, and exposure adjustment. Images were 

converted to PASCAL VOC format, and annotations were 

created using the labelImg tool to generate XML files. 

Table 1: Dataset split 

Set Percentage Number of images 
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Train 70% 10,610 
Validation 20% 3,031 

Test 10% 1,521 

Table 2: Number of samples per class 

Class Total samples Disease samples 

Blackchin tilapia 1,200 - 

Catfish 1,150 - 
EUS 900 900 

Eye Disease 850 850 

Fin lesions 800 800 
Giant gourami 1,100 - 

Jullien’s golden carp 1,050 - 

Mozambique tilapia 1,080 - 
Nile tilapia 1,120 - 

Red tilapia 1,150 - 

Rotten gills 820 820 
Silver barb 1,060 - 

Snakehead murrel 1,090 - 

Snakeskin gourami 1,140 - 
Total 15,162 3,370 

 

2.2 YOLOv8 Architecture 

YOLOv8 comprises three main components: Backbone, 

Neck, and Head. The Backbone extracts features using 

modules like C2f and SPPF, the Neck integrates multi-scale 

features, and the Head predicts object positions and 

categories using an anchor-free approach. Key features 

include the C2f module for efficient feature extraction and a 

decoupled head for improved accuracy [4]. These 

components form the foundation for FISH-YOLOV8’s 

improvements, particularly in small object detection and 

computational efficiency. 

2.3 SPD-Conv module 

The SPD-Conv module replaces traditional strided 

convolution and max pooling in YOLOv8s, combining a SPD 

layer with a non-strided convolution layer. The SPD layer 

transforms spatial dimensions into depth/channel dimensions, 

halving the spatial size while preserving channel information. 

The subsequent non-strided convolution processes each 

feature without skipping, preserving fine-grained details [15]. 

 

Figure 2: The structure of SPD-Conv 

For an input feature map X of size W×H×C, the SPD layer 

generates four feature maps X1, X2, X3, X4, each of size 

W/2×H/2×C, in (1) 

Xf = [ X1; X2; X3; X4 ] 
(1) 

After that, the feature map X1x1 is obtained by 1x1 

convolution reduces the channel dimension, in (2) 

X1×1 = Conv1×1(Xf) 
(2) 

 Finally, feature extraction is performed by 3×3 convolution, 

in (3) 

Xout = Conv3×3(X1×1) 
(3) 

The overall formula can be expressed in (4) 

Xout=Conv3×3(Conv1×1([X1; X2; X3; X4])) 
(4) 

This module enhances feature extraction in low-resolution 

underwater images, reducing computational cost (Table 6) 

and improving small object detection. 

2.4 BiFormer Attention 

BiFormer Attention, a modified Transformer mechanism, 

enhances feature fusion in FISH-YOLOV8 by introducing a 

dynamic sparse attention mechanism known as BRA [16]. 

Unlike traditional attention mechanisms that process all 

tokens uniformly, BRA enables query-aware sparsity, 

selectively focusing on key features and preserving fine-

grained details often lost in downsampling. This is 

particularly advantageous for detecting small or occluded 

underwater targets, such as fish in turbid water or dense 

environments, where critical details must be prioritized 

without increasing computational overhead. 

The input feature map X∈RH×W×C, where H, W, and C 

represent height, width, and channel dimensions, is first 

divided into S×S subregions, each containing HW/S2 feature 

vectors.  

These subregions are reorganized into a transformed feature 

map Xr, which facilitates multi-scale processing. Linear 

transformations then generate three matrices: the query (Q), 

key (K), and value (V), all derived from Xr, enabling the 

attention mechanism to operate on relevant features: 

Q =  WqXr, K = WkXr, V = WvXr (5) 

where Wq, Wk, and Wv are learnable weight matrices for Q, K, 

V, respectively. 

The BRA process unfolds in three steps: 

• Coarse-grained region selection: The feature map is 

segmented into coarse-grained regions, and the most relevant 

regions are identified by computing similarities between Q 

and K. For each query in the i-th regions, an index Ir, is 

constructed, representing the top-k most relevant regions 
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(where 𝑘 is a predefined hyperparameter). This routing 

reduces the scope of attention to a small subset of key areas. 

 

Figure 1: The structure of  BiFormer attention 

• Fine-grained token selection: Within these selected 

regions, key-value pairs are gathered: 

Kg=gather(K, Ir) (6) 

Vg=gather(V, Ir) (7) 

Here, Kg and Vg are the collected key and value tensors 

corresponding to the indices in Ir, focusing 

computational effort on the most pertinent features. 

• Attention processing: The output tensor 𝑂 is computed by 

applying attention to the refined tokens, augmented with a 

LCE term to capture local dependencies: 

O = Attention(Q, Kg, Vg)+LCE(V) (8) 

The attention function is typically defined as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾𝑔, 𝑉𝑔) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄(𝐾𝑔)𝑇

√𝑑𝑘
) 𝑉𝑔 

(9) 

where 𝑑𝑘 is the dimension of the key vectors, ensuring 

numerical stability. The LCE term enhances local feature 

interactions, improving robustness to noise (e.g., lighting 

variations in Figure 1). 

In FISH-YOLOV8, BiFormer Attention is integrated into the 

feature fusion stage (Section 2.6) to optimize attention toward 

underwater targets. By dynamically adjusting attention 

weights based on input image characteristics, BRA assigns 

higher priority to relevant positions and features-such as 

small fish (<32×32 pixels) or disease markers-while 

suppressing irrelevant background noise. This mechanism 

contributes a 15% recall improvement for small objects 

compared to YOLOv8s, as demonstrated in Figure 6 (Section 

3.4), addressing occlusions and turbidity common in the 

dataset (Figure 1). Additionally, BRA maintains 

computational efficiency, with only a modest increase in 

FLOPs (27.2G vs. 26.8G post-SPD-Conv, Table 6), ensuring 

real-time performance at 45 fps. 

2.5 Non-Maximum suppression 

NMS reduces overlapping bounding boxes by selecting the 
box with the highest confidence score and suppressing others 

with an IoU above a threshold (𝜏). We propose a novel 
dynamic IoU threshold adjustment for NMS, where 𝜏 is 
adapted based on object density in the image. For high-
density regions (e.g., >10 fish per 640×640 patch), 𝜏 is 
increased to 0.8 to reduce false positives; for low-density 
regions, 𝜏 is lowered to 0.6 to preserve detections. This 
dynamic adjustment, a key contribution of this study, reduces 
false positives by 12% in high-density fish environments, as 
shown in Section 3.5.  

Algorithm 1: NMS Algorithm  

Input:  Set of predicted bounding boxes B, confidence scores S, 

IoU threshold τ, confidence threshold T,  Set of filtered bounding 

boxes F 

Output: List of selected boxes Keep 

Procedure: 

1:  F←∅ 

2:  Filter the boxes: B←{b∈ B∣ S(b)≥T} 

3:  Sort the boxes B by their confidence scores in descending 

order 

4:  while B ≠∅ do 

5:  Select the box b with the highest confidence score 

6:     Add b to the set of final boxes F: F←F∪ {b} 

7:     Remove b from the set of boxes B: B←B−{b} 

8:     for all remaining boxes r in B do 

9:        Calculate the IoU between b and r: iou←IoU(b,r) 

10:      if iou ≥ τ then 

11:           Remove r from the set of boxes B: B←B−{r} 

12:      end if 

13:   end for 

14:  end while 

2.6 Improved YOLOv8 model (FISH-YOLOV8) 

To improve small target detection, we introduce a 160×160 

detection layer in YOLOv8s. This layer fuses the fifth 80×80 

feature layer from the backbone with an upsampled feature 

layer from the neck via C2f modules. The resulting deep 

semantic feature layer is integrated with the shallow 

positional feature layer from the third backbone layer, 

enhancing the 160×160 fusion layer’s representation. This 

information is transferred to multi-scale feature layers in the 
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head, improving small target detection accuracy. The 

160×160 layer enhances sensitivity to small targets, 

improving mAP@50 by 1.5% compared to 80×80 (Table 7).

  

Figure 4: The Architecture of FISH-YOLOv8  

Loss function: 

FISH-YOLOV8 uses three loss functions from YOLOv8: 

VFL Loss, DFL Loss, and CIoU Loss. VFL Loss combines 

IoU and confidence scores: 

𝑉𝐹𝐿(𝑝, 𝑞)

= {
−𝑞(𝑞𝑙𝑜𝑔(𝑝) + (1 − 𝑞) 𝑙𝑜𝑔(𝑞 − 𝑝)) 𝑞 > 0

−∝ 𝑝𝑦 𝑙𝑜𝑔(1 − 𝑝)  𝑞 = 0
 

(10) 

 

FISH-YOLOV8 uses three loss functions from YOLOv8: 

VFL Loss, DFL Loss, and CIoU Loss. VFL Loss combines 

IoU and confidence scores: where 𝑞 is the IoU between the 

predicted and ground truth boxes, and 𝑝 is the confidence 

score. DFL Loss focuses the network on values near the label: 

𝐷𝐹𝐿(𝑆𝑖 , 𝑆𝑖+1) = −((𝑦𝑖+1 − 𝑦) log(𝑆𝑖) + (𝑦 −
𝑦𝑖)log (𝑆𝑖+1)) 

(11) 

CIoU Loss considers position, shape, and orientation: 

𝐶𝐼𝑜𝑈 𝐿𝑜𝑠𝑠 = 𝐼𝑜𝑈 − (
𝑝2(𝑏, 𝑏𝑔𝑡)

𝑐2
+ 𝜎𝑉) (12) 

𝑉 =
4

𝜋2
𝐼𝑜𝑈 (𝑎𝑟𝑐𝑡𝑎𝑛

𝑤𝑔𝑡

ℎ𝑔𝑡
− 𝑎𝑟𝑐𝑡𝑎𝑛

𝑤

ℎ
)

2

 (13) 

𝜎 =  
𝑉

(1 − 𝐼𝑜𝑈) + 𝑉
 (14) 

The total loss is: 

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠(𝑥) = α𝐿𝑜𝑠𝑠𝑉𝐹𝐿(𝑥) +  𝛽𝐿𝑜𝑠𝑠𝐷𝐹𝐿(𝑥)
+  𝛾𝐿𝑜𝑠𝑠𝐶𝐼𝑂𝑈(𝑥) 

(15) 

where 𝛼 = 0.5, 𝛽=1.0, and 𝛾= 2.0, tuned experimentally. 
(Section 3.4 for details). 

3. Experiments and discussion  

3.1. Experimental setup 

The model was trained and tested on a system with Windows 
11, Intel® Core™ i9-14900K 3.20GHz, NVIDIA GeForce 
RTX4090 24GB, CUDA 10.2.89, and cuDNN 7.6.5. Training 
parameters are shown in Table 3. To prevent overfitting and 
optimize training efficiency, we employed an early stopping 
mechanism based on the validation mAP@50. The training 
was set to run for a maximum of 1000 epochs but stopped at 
epoch 583, as the validation mAP@50 did not improve for 50 
consecutive epochs (patience=50), indicating that the model 
had converged. This early stopping strategy ensured optimal 
performance while reducing computational cost. This 
convergence at epoch 583 underscores training efficiency, as 
discussed in Section 3.5. 

Table 3: Initialization parameters for the FISH-YOLOv8  

Parameter Setup 

Epoch 1000 

Patience 50 (epochs) 

Batch Size 16 
NMS IoU 0.7 

Image Size 640 × 640 

Learning Rate 0.00333–0.007381 
Momentum 0.937 

Weight Decay 0.0005 

3.2. Selection of evaluation indicators  

We use a confusion matrix to evaluate detection and 

classification performance, focusing on TP, FP, and FN. 

Precision, Recall, F1-Score, mAP@50, and mAP@50:95 are 

computed. The mAP is calculated as: 

𝑚𝐴𝑃 =
∑ 𝐴𝑃𝑖

𝑁
𝑖=1

𝑁
 (16) 

where 𝑁 is the number of classes, and AP𝑖 is the average 

precision for class 𝑖. 

3.3.  Image data preparation 
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The dataset from Roboflow Universe [14] includes 15,162 

images across 14 classes, as described in Section 2.1. Data 

augmentation techniques were applied to enhance model 

robustness, and annotations were prepared in PASCAL VOC 

format using labelImg. 

3.4. FISH-YOLOv8 model results  

FISH-YOLOV8 was evaluated on the test set (1,521 images) 

of the Roboflow Universe dataset [14] for fish classification 

and disease detection in underwater environments. Table 4 

presents the class-wise performance metrics, including 

Precision, Recall, F1-Score, mAP@0.5, and mAP@50:95. 

Table 4: Detection performance metrics 

Fish Class, Disease Class Precision (%) Recall (%) F1-Score (%) mAP@0.5 (%) mAP@50:95 (%) 

Blackchin tilapia 98.1 98.5 98.3 99.5 87.0 
Catfish 98.0 98.2 98.1 99.5 87.0 

EUS 96.5 97.7 97.1 97.7 83.0 

Eye Disease 97.0 98.8 97.9 98.8 85.5 
Fin lesions 96.8 97.5 97.1 98.0 84.0 

Giant gourami 97.5 98.0 97.7 99.0 86.0 

Jullien’s golden carp 97.2 97.8 97.5 98.5 85.0 
Mozambique tilapia 96.5 97.0 96.7 98.2 84.5 

Nile tilapia 96.8 97.2 97.0 98.3 84.5 

Red tilapia 98.0 98.5 98.2 99.5 87.0 
Rotten gills 96.5 97.0 96.7 98.0 84.0 

Silver barb 97.0 97.5 97.2 98.5 85.0 

Snakehead murrel 97.5 98.0 97.7 99.0 86.0 
Snakeskin gourami 98.0 98.3 98.1 99.5 87.0 

Table 4 highlights FISH-YOLOV8’s robust performance, 
with mAP@50 exceeding 98% for most classes. Disease 
classes like EUS (97.7%) and Fin lesions (98.0%) show 
slightly lower scores due to subtle visual cues, as observed in 
Figure 6(a), reflecting the dataset’s complexity (Figure 1). 
Visual examples of disease detection are shown in Figure 
6(a), while Figure 6(b) and 6(c) demonstrate FISH-
YOLOV8’s superior small object detection compared to 
YOLOv8s, with Figure 6(c) also providing a fish 
classification example (e.g., Silver barb), addressing a key 
challenge in underwater imaging (Figure 1). 
The overall performance metrics on the Roboflow Universe 
dataset are: mAP@50: 0.99028; mAP@50:95: 0.85940; 
Precision: 0.98101; Recall: 0.98522; F1-Score: 0.98311 
(computed as 2×Precision×Recall/(Precision+Recall) 

To assess the model’s generalizability, we conducted an 

additional experiment on the Fish-Pak dataset [7], which 

includes 1,800 images of six freshwater fish species (no 

disease classes). FISH-YOLOV8 achieved a mAP@50 of 

0.975, compared to YOLOv8s’s 0.940, demonstrating its 

robustness across different datasets (Section 3.5 for 

discussion). 

The loss weights in Equation (15) (𝛼=0.5, 𝛽=1.0, 𝛾=2.0) were 
tuned experimentally on the validation set. We tested various 
combinations (e.g., 𝛼=0.3,0.7; 𝛽=0.5,1.5; 𝛾=1.0,3.0) and 
found the chosen values to optimize the balance between 
classification (VFL Loss), localization (DFL Loss), and 
bounding box accuracy (CIoU Loss), yielding a 1.2% 
mAP@50 improvement over default YOLOv8 weights 
(𝛼=0.5, 𝛽=1.0, 𝛾=1.5). Compared to non-YOLO models like 
Faster R-CNN, which typically use a single loss (e.g., cross-
entropy with Smooth L1), FISH-YOLOV8’s multi-loss 
approach better handles class imbalance and small object 
localization, as evidenced by its 7% mAP@50 improvement 
over Faster R-CNN (Table 5). 

We also analyzed the model’s sensitivity to key parameters: 

the IoU threshold (𝜏) in NMS and the detection layer size 

(160×160 vs. 80×80). Table 7 shows that a dynamic 𝜏 (0.6–

0.8) outperforms a fixed 𝜏=0.7, improving mAP@50 by 

0.8%. Using a 160×160 detection layer increases mAP@50 

by 1.5% compared to 80×80, with a minor speed trade-off (45 

fps vs. 46 fps). 

Table 5: A comparison of the FISH-YOLOv8 with baseline and competing models  

Model mAP@50 (%) <%@50:95 (%) Precision (%) Recall (%) Speed (fps) Parameters (M) 

YOLOv7 89.4 0.750 88.7 88.2 50 36.5 
YOLOv8s 91.7 0.820 90.5 89.8 48 25.9 

YOLOv11 99.2 0.875 98.5 98.0 40 30.2 

Faster R-CNN 92.0 0.780 91.0 90.5 15 41.3 
FISH-YOLOV8 99.0 0.859 98.1 98.5 45 26.5 

FISH-YOLOV8’s balance of mAP@50 (99.0%) and speed (45 fps) outperforms Faster R-CNN (15 fps) and rivals YOLOv11 

(40 fps), as visualized in Figure 7. 
Table 6: Computational cost and feature extraction improvements 

Model/Component Parameters (M) FLOPs (G) Speed (fps) mAP@50 (%) 

YOLOv8s (Baseline) 25.9 28.4 48 91.7 

+ SPD-Conv 25.9 26.8 47 94.2 
+ BiFormer 26.5 27.2 45 97.5 

FISH-YOLOV8 26.5 27.2 45 99.0 

Table 7: Sensitivity analysis of key parameters 
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Parameter Value mAP@50 (%) Speed (fps) 

IoU Threshold (τ) Fixed (0.7) 98.2 45 

IoU Threshold (τ) Dynamic (0.6–0.8) 99.0 45 
Detection Layer Size 80×80 97.5 46 

Detection Layer Size 160×160 99.0 45 

  
(a)  (b) 

Figure 5: Confusion matrix; (a) Quantitative information; (b) Ratio information (normalized) 

  
  

(a) 

  
(b) (c) 

Figure 6: FISH-YOLOV8 detection results and small object comparison; (a) Disease detection; (b) YOLOv8s: Missed small fish; (c) FISH-YOLOV8: 

Successfully detected small fish with classification 
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Figure 7: Comparison of mAP@50 and speed across models 

 

Figure 8: Training and validation metrics over epochs;(a) Training losses (box, cls, dfl); (b) Training metrics (precision, recall); (c) Validation losses (box, 

cls, dfl); (d) Validation metrics (mAP@50, mAP@50:95). 

Figure 8 illustrates the training and validation process of 

FISH-YOLOV8 over 600 epochs. The decreasing trend in 

losses (a, c) and the increasing trend in metrics (b, d) 

demonstrate the model’s convergence, with mAP@50 and 

mAP@50:95 stabilizing at 0.990 and 0.859, respectively, 

consistent with Table 4. The early stopping at epoch 583 

(Section 3.1) is justified as metrics plateau before this point. 

3.5. Discussion 

FISH-YOLOV8 surpasses baseline YOLOv8s (mAP@50: 

91.7%) and YOLOv7 (mAP@50: 89.4%), achieving a 

mAP@50 of 99.0% and a mAP@50:95 of 0.859. It closely 

matches YOLOv11 [5] (mAP@50: 99.2%) while providing a 

superior speed-accuracy balance (45 fps vs. 40 fps). Early 

convergence at epoch 583 (Table 3) highlights FISH-

YOLOV8’s training efficiency, yielding a 5.4% mAP@50 

improvement over YOLOv8s (Table 5). This efficiency, 

coupled with enhanced small object detection (Figure 6), 

effectively tackles critical challenges in underwater 

environments (Figure 1). 

The model’s ability to converge early at epoch 583 (out of a 

maximum of 1000 epochs) further highlights its training 

efficiency, as it achieved optimal performance without 

requiring additional computational resources. Compared to 

Faster R-CNN [1], FISH-YOLOV8 provides superior 

accuracy (mAP@50: 99.0% vs. 92.0%) and speed (45 fps vs. 

15 fps). Against the original YOLOv8s, FISH-YOLOV8 

maintains near-identical speed (45 fps vs. 48 fps) despite a 

slight parameter increase (26.5M vs. 25.9M), as shown in 

Table 5 and Figure 7. 

The SPD-Conv module reduces computational cost (FLOPs: 

28.4G to 26.8G, Table 6) while improving feature extraction, 

contributing a 2.5% mAP@50 increase. BiFormer Attention 

enhances small object detection by 15% in recall for objects 

<32×32 pixels (Figure 6), addressing occlusions and 

improving precision by 3.2%. The proposed dynamic IoU 

threshold in NMS reduces false positives by 12%, particularly 

in high-density fish environments, as shown in Table 7. 
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The confusion matrix (Figure 5) reveals high accuracy for 

distinct classes (e.g., Blackchin tilapia, Catfish: 0.99 - 1.00), 

but minor misclassifications occur between similar species 

(e.g., Nile tilapia and Mozambique tilapia: 0.03–0.06). This 

is likely due to overlapping morphological features (e.g., 

similar body shapes and colors), which are challenging to 

distinguish in low-resolution underwater images. For disease 

detection, small lesions (e.g., Fin lesions, mAP@50: 98.0%) 

show higher false negatives due to their subtle appearance 

and limited training samples (800 images, Table 2). The EUS 

class, which includes hemorrhagic symptoms as clarified in 

Section 2.1, achieves a mAP@50 of 97.7%, reflecting its 

complexity but also the model’s capability to handle such 

diseases (Figure 6). The higher FN rate for small lesions 

(Table 4, Figure 5) reflects limited samples (Table 2) and 

noise (Figure 1), suggesting future data augmentation for 

these classes. Increasing the diversity and quantity of training 

data for such classes could mitigate these issues. 

To evaluate generalizability, FISH-YOLOV8 was tested on 

the Fish-Pak dataset [7], achieving a mAP@50 of 0.975 

compared to YOLOv8s’s 0.940. This demonstrates the 

model’s robustness across datasets with different fish species 

and imaging conditions, suggesting its potential for broader 

aquaculture applications. 

FISH-YOLOV8 maintains robustness in murky water, low-

light conditions, and high-density environments. However, 

extreme conditions like highly turbid water or excessive 

reflections slightly impact accuracy. To address this, future 

work could incorporate specialized data augmentation 

techniques (e.g., simulating extreme turbidity and reflections) 

or integrate light filters to preprocess images, enhancing 

performance in such scenarios. Additionally, while the 

current dataset focuses on static images of captured or stable 

fish (Section 2.1), detecting moving fish in real-world ponds 

remains a challenge. Future experiments using pond-installed 

cameras are planned to capture such data, as outlined in 

Section 4. 

The improvements in FISH-YOLOV8, particularly SPD-

Conv and BiFormer Attention, are not limited to aquaculture. 

SPD-Conv’s ability to preserve fine-grained details in low-

resolution images could benefit medical imaging tasks (e.g., 

detecting small tumors in X-rays), while BiFormer 

Attention’s focus on small objects and occlusions could 

improve traffic surveillance (e.g., detecting pedestrians in 

crowded scenes). The dynamic IoU threshold in NMS is also 

broadly applicable to any Object Detection task with varying 

object densities, such as autonomous driving or crowd 

monitoring. 

4. Conclusion 

FISH-YOLOV8 substantially improves YOLOv8 for fish 

classification and disease detection, attaining a mAP@50 of 

0.990 and a mAP@50:95 of 0.859 across 15,162 images. 

These advancements stem from integrating the SPD-Conv 

module, BiFormer Attention, a 160×160 detection layer for 

small targets, and a novel dynamic IoU threshold in NMS, 

yielding a 5.4% mAP@50 increase, 5.0% precision gain, and 

4.3% recall improvement over YOLOv8s. With a real-time 

processing speed of 45 fps, the model facilitates effective 

deployment in intelligent aquaculture monitoring, supporting 

optimized feeding, proactive disease prevention, and 

sustainable practices. These improvements, validated by 

Table 5 and Figure 7, position FISH-YOLOV8 as a robust 

solution for real-time aquaculture monitoring. 

To further validate its practical applicability, we plan to 

deploy FISH-YOLOV8 at the Tung Lam freshwater intensive 

fish farm in Ung Hoa District, Hanoi, in collaboration with 

local aquaculture experts. This pilot study will assess the 

model’s performance in real-world conditions, focusing on its 

ability to detect diseases in dynamic underwater 

environments and its integration into automated monitoring 

systems. Future work will extend to video-based detection of 

moving fish using pond-installed cameras to capture real-time 

data, enhancing automation and efficiency in aquaculture. 

This will leverage temporal information to improve accuracy, 

alongside integrating fish behavior models to enhance 

detection performance. 
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