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Abstract 
 
Wind energy has great potential for electricity generation, but its variability makes accurate wind speed forecasting essential for efficient 

integration. This study explores the application of a transformer-based deep learning model for wind speed forecasting. The model features 

an encoder-decoder architecture with multi-head attention, feed-forward layers, and normalization functions. By leveraging a self-attention 

mechanism, the transformer model effectively captures temporal dependencies in time series data through weighted relationships among 

input sequences, leading to improved forecasting accuracy. To evaluate its effectiveness, we collected and pre-processed wind speed data 

from the Hong Phong 1 wind power plant, cleaned the data by removing outliers and addressed missing values. The processed data was then 

embedded and added positional encoding to prepare for model input. The model was trained, and its performance was benchmarked against 

other models, including Long Short-Term Memory, Convolutional Neural Networks, and Artificial Neural Networks. The obtained RMSE is 

quite low, with 0,26 m/s for single-step forecast, 0,73 m/s for 4-step forecast and 1,70 m/s for 16-step forecast. These results demonstrated 

that the transformer model achieved superior predictive performance, suggesting it as a powerful alternative to traditional forecasting 

methods, with significant potential for enhancing the accuracy of wind speed predictions. 
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1. Introduction 

Energy demand continues to rise in the modern era, yet 

traditional sources like coal, oil, and gas are not only depleting 

but also major contributors to environmental pollution. 

Therefore, developing sustainable energy alternatives is 

essential. Wind energy, a clean and abundant resource, 

addresses pollution concerns while offering notable economic 

advantages. The Global Wind Power Report 2022 notes that 

by the end of 2021, global wind power capacity reached 837 

GW [1]. By 2040, wind power is expected to generate 

approximately 8,300 TWh, surpassing solar PV at 7,200 TWh 

and hydropower at 6,950 TWh [2]. However, the variability 

and intermittency inherent to wind power pose challenges for 

balancing supply and demand. Accurate wind speed 

forecasting is crucial for reliable wind power output 

prediction, reducing uncertainty, enhancing system stability, 

and ensuring power quality. Thus, precise wind speed 

forecasting has emerged as a critical area of research. 

The wind speed forecast discussed in this paper focuses on 

predicting future wind speed values at specific points. It 

mainly includes physical forecasting models, statistical 

models and artificial intelligence (AI) models. Physical 

methods, often based on lower atmospheric dynamics or 

numerical weather prediction (NWP), use weather-related 

data like temperature, pressure, surface roughness, and local 

obstacles [3]. These models are particularly effective for 

medium- and long-term forecast [4], but may not perform well 

when dealing with real data that involves complex 

relationships. Statistical models, which include time series 

models like autoregressive (AR), moving average (MA), 

autoregressive moving average (ARMA), autoregressive 

integrated moving average (ARIMA), predict wind speed 

based on historical data. AR model uses linear functions to 

predict values from historical data, while the MA model 

represents the current value of the time series as a function of 

past noise terms. Meanwhile, the ARMA model combines two 

main components: AR and MA [5], ARIMA is made up of 

AR and MA along with an integrated component (I). 

However, these models, with their focus on linear analysis and 

stable data inputs, are often less suitable for highly nonlinear 

time series data [6]. Additionally, statistical models also face 

limitations such as reduced accuracy in long-term forecasting, 

poor performance with seasonally dependent time series, and 

reliability concerns. Recently, AI methods have gained 

prominence due to their ability to handle complex systems and 

improve prediction accuracy [7]. Machine learning, deep 

learning, and fuzzy logic offer significant flexibility, with 

techniques like neural networks being effective for modeling 

nonlinear data and identifying complex relationships [8]. 

Nevertheless, these models demand considerable 

computational power, pose training challenges, and are 

susceptible to overfitting. Deep Learning (DL), a subset of 

machine learning, exhibits advanced learning capabilities, 

with models such as Deep Neural Networks (DNN), 

Recurrent Neural Networks (RNN), and Convolutional 
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Neural Networks (CNN) demonstrating notable success. 

However, these models often face challenges in capturing 

long-term dependencies. While models like Long Short-Term 

Memory (LSTM) and Gated Recurrent Units (GRU) can 

address these challenges, they struggle with efficient feature 

extraction and often have slower training times [9]. Artificial 

Neural Network (ANN) is capable of handling the modeling 

of complex systems [10]. However, the disadvantages of 

ANN network are that it requires large amounts of data and is 

at risk of overfitting. 

The transformer is an advanced deep learning model that has 

gained significant prominence in forecast area [11]. Built on 

the attention mechanism, it serves as a highly effective 

sequence transcription tool, adept at overcoming many 

limitations found in traditional approaches [12]. Unlike 

sequential models, the transformer processes input sequences 

in parallel, enhancing both computational efficiency and 

accuracy [13]. The encoder captures and encodes these 

intricate patterns, while the decoder produces predictions 

based on the information learned by the encoder. The 

transformer has demonstrated its potential across various 

fields, including natural language processing, computer 

vision, and energy forecasting, marking it as a promising tool 

for both industrial applications and academic research [14]. 

In this paper, we used a transformer model for wind speed 

prediction using data from the Hong Phong 1 power plant. The 

primary aim was to forecast future wind speed values and 

evaluate the transformer model’s performance against 

traditional models like LSTM, CNN, and ANN. This model 

was selected for its strength in modeling long-term 

dependencies and complex temporal patterns, which are 

essential characteristics of wind speed time series. The model 

configuration, including the number of attention heads and 

layers, was carefully adjusted to fit the time series data and 

the specific requirements of wind speed forecasting. To 

enhance model generalization and mitigate overfitting, we 

applied dropout after each key sub-layer, especially when 

integrating positional encoding. This approach helped reduce 

positional dependence, improving the model’s adaptability 

and robustness for forecasting tasks.  

The remainder of the paper is organized as follows. Section 2 

covers the methodology used in this study. The results and 

discussion are presented in Section 3. And finally, Section 4 

provides the conclusion.  

2. Methodology 

2.1. Transformer structure 

The transformer architecture, as illustrated in Figure 1 [15], 

consists of an encoder on the left and a decoder on the right. 

The encoder is composed of two primary sub-layers: a multi-

head attention mechanism and a feed-forward neural network 

[16]. Similar to the encoder, the decoder also includes these 

two layers but incorporates an additional layer called masked 

multi-head attention. Between each of these layers, there is an 

"add & normalize" component.  

2.1.1. Input embedding 

First, the data undergoes embedding. In wind speed dataset, 

information about position of the data in the set is important 

because it indicates the level of wind speed during that 

specific time period. However, the transformer model lacks 

an inherent mechanism to represent the positional information 

of the input sequence. Therefore, positional information must 

be incorporated by adding positional encoding to the 

embedded input. Both the input embedding and positional 

encoding share the same dimension dmodel. The positional 

encoding is represented as follows:  

 

 

Figure 1: Architecture of transformer model 
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Figure 2: Positional encoding 
 

𝑃𝐸(𝑝𝑜𝑠,𝑖) = sin (
𝑝𝑜𝑠

10000
𝑖

𝑑model 

)                                                                (1) 

 

𝑃𝐸(𝑝𝑜𝑠,𝑖) = cos (
𝑝𝑜𝑠

10000
𝑖−1

𝑑model 

)                                                            (2) 

 

where pos is the position of the data in the sequence data, i is 

the i-th dimension of positional encoding. Equation (1) is used 

when i is even and equation (2) if i is odd. The i value of 

positional encoding is determined as shown in Figure 2. 

2.1.2. Encoder 

Suppose the set of input vector is X={X1, X2, X3,…Xn), the 

encoder maps X to head H={H1, H2, H3,…Hn}. The encoder 

consists of two primary sub-layers: a multi-head attention 

mechanism and a feed-forward neural network. The multi-

head attention layer is combined with dropout. Each sub-

layers uses a residual structure and then the output data is 

layer-normalized [17]. They can be expressed as:  

 

𝑧 = 𝛾 ×
(𝑥+ 𝑂𝑢𝑡𝑠𝑢𝑏𝑙𝑎𝑦(𝑥))−𝜇

√𝜎2+𝜖
+ 𝛽                                                   (3) 

 

where x is the input of a sublayer and Outsublay (x) is the 

output of the sublayer with input x, μ is the mean of 

(x+Outsublay(x)), σ2 is the standard deviation of 

(x+Outsublay(x)), ϵ small constant to avoid division by zero, 

γ and β are the learnable parameters (scale and shift) of 

normalization layers, z is the normalized output. 

2.1.3. Multi-head attention layer 

How the multi-head attention mechanism works is illustrated 

in Figure 3. The input vectors are combined into a matrix of 

size (n, dmodel) with n is number of input vectors, then vector 

X is multiplied with the weight matrices WQ, WK, WV of size 

(dmodel, dmodel) to get matrix Q, K, V has size (n, dmodel). Then 

the vectors will be divided into h representing h heads Qi, Ki, 

Vi of size (n, dmodel/h) by multiplying with the matrices Wq
i, 

Wk
i, Wv

i of size (dmodel, dmodel/h). Then perform the attention 

calculation for each head [18]: 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(ℎ𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝐐𝑖⋅𝐊𝑖

𝑇

√𝑑𝑘
)                                                  (4) 

 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(ℎ𝑖). 𝑉𝑖                                                         (5) 

 

Where dk=dmodel/h. 

Then group the outputs of the heads together via the concat 

function [19]: 

 

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑 =  𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)                                    (6) 

 

 
 

Figure 3: Multi-head attention operation 

2.1.4.  Feed- forward layer (FF) 

The FF network uses two linear transformation matrices along 

with a Rectified Linear Unit (ReLU) activation function. 

Because of the existence of two linear transformation 

matrices, the dimension of the output of this layer is kept 

equal to dmodel while the dimension can be adjusted for 

calculation within the layer. The formulation is as follow [20]: 

 

𝐹𝐹(𝑥) = 𝑚𝑎𝑥(0, 𝑧𝑊1 + 𝑏1)𝑊2 + 𝑏2                                              (7) 

 
where z is the output of add & normalization layers, W1 is the 

linear transformation matrix with size (dmodel, dff) and W2 is 

the matrix with size (dff, dmodel).  

2.1.5. Decoder 

The final input of the encoder input serves as the starting for 

the decoder input. The transformer’s decoder consists of 

several decoder blocks, each block is made up of the same two 

sub-layers as the encoder blocks, with an extra sub-layer 

called the masked multi-head attention layer. Similarly to 

encoders, decoders also feature residual connections and 

normalization layers following each sub-layer [21]. Multi-

attention and feed-forward layers operate in the same way as 

two layers of the same name in the encoder but in multi-head 

attention layer the matrix which multiple with WK, WV to get 

matrix K, V is the output of encoder. The special thing here is 

that the way mask-multihead attention layers operations is 

similar to how multi-head layer works but, but the input here 

is the output target sequence and:  

 

𝑀𝑎𝑠𝑘 𝑆𝑐𝑜𝑟𝑒𝑠 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠 + 𝑀𝑎𝑠𝑘                                         (8) 

 

𝐻𝑒𝑎𝑑 = softmax(𝑀𝑎𝑠𝑘 𝑆𝑐𝑜𝑟𝑒𝑠) . 𝑉                                               (9)     

 

Where Mask is a main diagonal matrix with the upper half 

having a value of − and the lower half having a value of 0.  

2.2. Experimental details 

2.2.1. Dataset collection 

In this experiment, the historical wind speed dataset from 

Hong Phong 1 wind power plant was collected during the 

period from February 1st, 2022, to December 31st, 2022, 

which includes actual measurements of wind speed (m/s) with 



60 Journal of Measurement, Control, and Automation 

 

sampling time of 15 minute. Hong Phong 1 wind power plant 

is located in Binh Thuan province, Vietnam. Binh Thuan 

province is located on the coast of the South-Central Coast 

region, has a sub-equatorial tropical monsoon climate, not 

much influenced by the Northeast monsoon, so it is a province 

with lots of sunshine, lots of wind, many storms and has quite 

high humidity. That area has two distinct seasons: the rainy 

season lasts from May to October, and the dry season lasts 

from November to April of the following year. Binh Thuan 

possesses diverse wind regimes and is one of the locations 

with the greatest potential for wind power development in 

Vietnam. The Northeast monsoon is common during the dry 

season and the Southwest monsoon blows heavily during the 

rainy months. Additionally, 80% of the dataset was used as 

the training set, the next 10% acted as the validation set, and 

the rest was the test set. 

2.2.2. Data preprocessing 

The experimental data may have outliers or missing values 

and needs to be preprocessed. The outliers were found and 

replaced, missing values eliminated if not needed or filled in 

by interpolation technique. After processing outliers and 

missing values, having too many large data values in the data 

set can impact the results of data analysis. To rescale different 

features, min-max normalization was used [22]:  

 

𝑥∗ =
(ℎ𝑖𝑔ℎ−𝑙𝑜𝑤)(𝑥−𝑚𝑖𝑛)

𝑚𝑎𝑥−𝑚𝑖𝑛
                                                                  (10)    

 

Where max, min are, respectively, the largest and smallest 

value of data set. The data scaled down to a range [0,1] so 

high euqualed to 1 and low equaled to 0. Normalization 

ensures that input variables have similar ranges and 

distributions, which may contribute to the models learning. 

2.2.3. Model hyper-parameters 

In order to evaluate the forecasting performance, four models 

of transformer, LSTM, CNN and ANN were built and utilized 

to predict the wind speed with different horizons of single-

step, 4-step and 16-step. The transformer model adds 

positional information to the embedded input using positional 

encoding. The self-attention layers enable the model to learn 

and analyze relationships between data in a set, without 

considering the distance between them. To learn many types 

of relationships between data, the model uses multi-head 

attention layers with many self-attentions. Then the outputs of 

multi-head attention layers pass through a series of FF layers. 

By using these layers, the model can learn complex non-linear 

relationships between the input and output and FF layers also 

help enhance the model's capacity [23]. The decoder of the 

transformer model for time series forecasting uses a mask to 

make the model learn to predict the future data without 

information about the following data. We used the prediction 

horizon of single-step, 4-step and 16-step. The 

hyperparameters set for the transformer model as well as the 

compared models are shown in Table 1. These 

hyperparameters were tuned via Optuna framework to obtain 

the most optimal hyperparameter sets. 

2.2.4. Evaluation 

In this paper, three metrics were used for evaluation: Mean 

square error (MSE), mean absolute error (MAE) and root 

mean square error (RMSE). The MSE measures the average 

squared difference between the predicted and actual values, 

the lower the MSE, the higher the model's accuracy. The 

MAE calculates the absolute of the average differences 

between the predicted values and the actual values. And it 

indicates the distance between the forecast value and the 

actual value. The RMSE demonstrates the magnitude of the 

average error between actual and forecasted values and offers 

Table 1: Important parameters of the all models 

Model Hyper-parameter 1-step 4-step 16-step 

Transformer 

Embedding dimension (dmodel) 32 40 64 
Number of heads (h) 2 2 4 

Number of layers 1 1 1 

Dropout 0,1 0,1 0,15 
Learning rate (lr) 0,0025 0,0014 0,002 

LSTM 

Hidden layers 3 2 3 

Neurons in layer 80 150 233 

Activation ReLU ReLU ReLU 

Optimizer Adam Adam Adam 

Dropout 0,1 0,16 0,11 

Learning rate (lr) 0,003 0,0036 0,0012 

ANN 

Hidden layers 3 3 3 

Neurons (each layer) (48,128,64,1) (48,200,100,4) (48,334,208,16) 
Activation ReLU ReLU ReLU 

Dropout 0,1 0,1 0,12 

Learning rate (lr) 0,0015 0,001 0,0051 

CNN 

 Activation shape Activation shape Activation shape 

Input (64,48,1) (68,48,1) (64,48,1) 

Conv1 (64,43,50) (64,46,83) (64,46,55) 

Conv2 (64,42,100) (64,44,206) (64,44,214) 

MaxPooling (64,21,100) (64,22,206) (64,22,100) 

Flatten (64,2100) (64,4532) (64,4708) 

Output (64,2100,1) (64,4532,1) (64,4708,1) 

Dropout 0,1 0,1 0,018 

Learning rate (lr) 0,0015 0,0004 0,0022 
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the same measurement scale as the actual results. They can be 

expressed as: 

 

𝑀𝑆𝐸 =
1

𝑙
∑ (𝑝 − 𝑝

^
 )

2
𝑙
𝑖=1                                                                 (11) 

                                                          

𝑀𝐴𝐸 =
1

𝑙
∑ |𝑝 − 𝑝

^
|𝑙

𝑖=1                                                                    (12) 
 
 

𝑅𝑀𝑆𝐸 = √1

𝑙
∑ (𝑝 −  𝑝

^
)

2
𝑙
𝑖=1                                                           (13) 

 

where p denotes the actual value, 𝑝
^
 denotes the predicted 

value, l denotes the length of predicted series. 

Moreover, NRMSE was also used to normalize RMSE, 

allowing comparison of error levels between different models 

on data sets with different scales. It can be expressed as: 

 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

max (𝑦)−min (𝑦)
                                                                        (14)   

 

where max (y) is the max value of actual set, min (y) is the 

min value of actual set. 

3. Results and Discussion 

The results provided a comparative evaluation of transformer, 

LSTM, CNN, and ANN models in the forecasting task, which 

aimed to predict a sequence of future values based on current 

data. Four performance metrics were reported: MSE, MAE, 

RMSE and NRMSE. All four models were trained on the 

same training set with different forecast steps, using the same 

computational environment with identical hyperparameters 

for their training. We fine-tuned the proposed model, and the 

models used for comparison to ensure that the models 

performed with the best-fit set of hyperparameters. Table 2 

presents the detailed performance evaluation metrics for the 

transformer, LSTM, CNN, and ANN models. 

 

 

 

3.1. Single-step forecasting  

For single-step forecasting, it is clear from Table 2 that the 

transformer model has better performance than the other 

models when the transformer shows quite low errors, with 

values such as MSE at 0,07, MAE at 0,18, RMSE at 0,26, and 

NRMSE at 0,02. Compared to ANN (the model with the 

largest MSE error in single-step forecasting), the value of 

MSE error of the transformer model is 0,07, which is only 

16,28% of the equivalent value of the ANN model. The 

corresponding ratios compared to the LSTM and CNN models 

are 17,95% and 16,28%, respectively. Since the MSE 

indicator highlights the effect of large errors, the fact that the 

proposed model has a small MSE value indicates that the 

model has no or a negligible amount of error between the 

actual value and the predicted value. The MAE value of the 

transformer model is 0,18, which is also the lowest while the 

MAE value of the ANN model is still the highest. This means 

that on average, the model's wind speed forecast only differs 

by about 0,18 unit from the actual value, which shows that the 

forecast value fits reality quite precisely. This indicator of the 

transformer model is only about half of that of the other 

models. The same is seen in the RMSE and NRMSE 

indicators, where the values of the transformer model are still 

lower than all three models LSTM, CNN and ANN. These 

results demonstrate that the transformer model performs very 

well in single step forecasting and outperforms the compared 

models. Figure 4 shows the single-step wind speed 

forecasting results of four models.  

3.2. Multi-step forecasting 

A similar trend is also seen in multi-step forecasting. Multi-

step forecasting is performed including 4-step forecasting and 

16-step forecasting. Although the difference between the 

values of indicators of the models decrease, in general the 

indicators of the transformer model still have the lowest value. 

The MSE error of the transformer model in 4-step forecasting  

Table 2: Performance evaluation indicators of LSTM, CNN, ANN and transformer model 

Step Model MSE (m/s)² MAE (m/s) RMSE (m/s) NRMSE 

Single-step 

LSTM 0,39 0,41 0,63 0,04 

CNN 0,43 0,44 0,66 0,04 

ANN 0,43 0,42 0,65 0,04 

Transformer 0,07 0,18 0,26 0,02 

4-step 

LSTM 1,08 0,72 1,04 0,07 

CNN 1,09 0,75 1,04 0,07 

ANN 1,06 0,72 1,03 0,07 

Transformer 0,23 0,33 0,49 0,03 

16-step 

LSTM 2,76 1,25 1,66 0,11 

CNN 2,75 1,25 1,66 0,11 

ANN 2,88 1,27 1,69 0,12 

Transformer 0,59 0,49 0,77 0,05 
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is only about 21% of other models while the MAE, RMSE and 

NRMSE errors only fluctuate within 40-50% of the corre-

sponding values for the other models. In the 16-step forecast-

ing problem, the transformer model still achieves the best re-

sults despite the significant increase in steps with MAE of 

0,49 m/s and RMSE of 0,77 m/s, significantly lower than 

LSTM, CNN and ANN (all above 1,2 m/s). These indicate 

that transformer model is better even in multi-step forecast-

ing. Figure 5 and Figure 6 present the results of 4-step and 16- 

 

Figure 4: Single-step wind speed forecast results at Hong Phong 1 

 

Figure 5: 4-step wind speed forecast results at Hong Phong 1 
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step wind speed forecasting results of the four models, respec-

tively. 

3.3. Discussion 

In every instance, the transformer model outperforms the 

other models across various prediction intervals. As expected, 

the CNN and ANN models perform worse than both the 

LSTM and transformer models. Even when unusual data are 

present in the dataset, the performance of the transformer 

model only drops slightly compared to other models. This 

demonstrates that the proposed model exhibits better 

adaptability to weather changes and excellent generalization 

capability, making it applicable to diverse datasets. 

4. Conclusion  

In this paper, we examined the structure and operational 

principles of the transformer model and compared its 

performance with LSTM, CNN, and ANN models. Utilizing 

historical wind speed data from the Hong Phong 1 wind power 

plant, we forecasted future wind speeds with both the 

proposed transformer model and the comparative models. The 

results demonstrated that the transformer model consistently 

outperformed the other models for both single-step and multi-

step predictions. Specifically, the transformer model achieved 

the lowest values for MSE, MAE, RMSE, and NRMSE 

among all models with NRMSE only around 0,02 for 1 step, 

0,03 for 4 steps and 0,05 for 4-hour ahead forecast. Although 

forecasting errors increased with the prediction horizon, the 

transformer model remained robust and reliable. Overall, the 

transformer-based approach demonstrated superior accuracy 

and effectively addressed the limitations of traditional 

forecasting methods. 

Acknowledgments  

This research is funded by Hanoi University of Science and 

Technology (HUST) under project number T2024-PC-046 

References  

[1] “Global Wind Report 2022 - Global Wind Energy Council.” Accessed: 

Jul. 20, 2024. [Online]. Available: https://gwec.net/global-wind-report-

2022/ 
[2] N. N. V. Nhat, D. N. Huu, and T. N. T. Hoai, “Evaluating the EEMD-

LSTM model for short-term forecasting of industrial power load: A 

case study in Vietnam,” Int. J. Renew. Energy Dev., vol. 12, no. 5, pp. 
881–890, Sep. 2023, doi: 10.14710/ijred.2023.55078. 

[3] W.-Y. Chang, “A Literature Review of Wind Forecasting Methods,” J. 

Power Energy Eng., vol. 02, no. 04, pp. 161–168, 2014, doi: 
10.4236/jpee.2014.24023. 

[4] T. H. T. Nguyen and Q. B. Phan, “Hourly day ahead wind speed 

forecasting based on a hybrid model of EEMD, CNN-Bi-LSTM 

embedded with GA optimization,” Energy Rep., vol. 8, pp. 53–60, Nov. 

2022, doi: 10.1016/j.egyr.2022.05.110. 

[5] D. Kaur, T. Tjing Lie, N. K. C. Nair, B. Vallès, and 1 Department of 
Electrical &amp; Electronic Engineering, Auckland University of 

Technology, Auckland, New Zealand;, “Wind Speed Forecasting 

Using Hybrid Wavelet Transform—ARMA Techniques,” AIMS 
Energy, vol. 3, no. 1, pp. 13–24, 2015, doi: 10.3934/energy.2015.1.13. 

[6] N. Nhat, D. Nguyen Huu, and T. Nguyen, “Short-term multi-step 

forecasting of rooftop solar power generation using a combined data 
decomposition and deep learning model of EEMD-GRU,” J. Renew. 

Sustain. Energy, vol. 16, Jan. 2024, doi: 10.1063/5.0176951. 

[7] D. Bouabdallaoui, T. Haidi, F. Elmariami, M. Derri, and E. M. 
Mellouli, “Application of four machine-learning methods to predict 

short-horizon wind energy,” Glob. Energy Interconnect., vol. 6, no. 6, 

pp. 726–737, Dec. 2023, doi: 10.1016/j.gloei.2023.11.006. 
[8] N. T. H. Thu, P. N. Van, N. V. N. Nam, and P. H. Minh, “Forecasting 

Wind Speed Using A Hybrid Model Of Convolutional Neural Network 

And Long-Short Term Memory With Boruta Algorithm-Based Feature 

Selection,” vol. 26, no. 8. 

 

Figure 6: 16-step wind speed forecast results at Hong Phong 1 



64 Journal of Measurement, Control, and Automation 

 
[9] F. Tian, X. Fan, R. Wang, H. Qin, and Y. Fan, “A Power Forecasting 

Method for Ultra-Short-Term Photovoltaic Power Generation Using 

Transformer Model,” Math. Probl. Eng., vol. 2022, pp. 1–15, Oct. 

2022, doi: 10.1155/2022/9421400. 

[10] M. M. Ibrahim, A. A. Elfeky, and A. El Berry, “Forecasting energy 
production of a PV system connected by using NARX neural network 

model,” AIMS Energy, vol. 12, no. 5, pp. 968–983, 2024, doi: 

10.3934/energy.2024045. 
[11] W. Jiang et al., “Applicability analysis of transformer to wind speed 

forecasting by a novel deep learning framework with multiple 
atmospheric variables,” Appl. Energy, vol. 353, p. 122155, Jan. 2024, 

doi: 10.1016/j.apenergy.2023.122155. 

[12] P. C. Huy, N. Q. Minh, N. D. Tien, and T. T. Q. Anh, “Short-Term 
Electricity Load Forecasting Based on Temporal Fusion Transformer 

Model,” IEEE Access, vol. 10, pp. 106296–106304, 2022, doi: 

10.1109/ACCESS.2022.3211941. 
[13] J. Lee, I. Bahk, H. Kim, S. Jeong, S. Lee, and D. Min, “An Autonomous 

Parallelization of Transformer Model Inference on Heterogeneous 

Edge Devices,” in Proceedings of the 38th ACM International 
Conference on Supercomputing, in ICS ’24. New York, NY, USA: 

Association for Computing Machinery, Tháng Sáu 2024, pp. 50–61. 

doi: 10.1145/3650200.3656628. 
[14] P. Zhao et al., “Enhancing multivariate, multi-step residential load 

forecasting with spatiotemporal graph attention-enabled transformer,” 

Int. J. Electr. Power Energy Syst., vol. 160, p. 110074, Sep. 2024, doi: 
10.1016/j.ijepes.2024.110074. 

[15] W. Li et al., “An interpretable hybrid deep learning model for flood 

forecasting based on Transformer and LSTM,” J. Hydrol. Reg. Stud., 
vol. 54, p. 101873, Aug. 2024, doi: 10.1016/j.ejrh.2024.101873. 

[16] E. G. S. Nascimento, T. A. C. De Melo, and D. M. Moreira, “A 

transformer-based deep neural network with wavelet transform for 
forecasting wind speed and wind energy,” Energy, vol. 278, p. 127678, 

Sep. 2023, doi: 10.1016/j.energy.2023.127678. 

[17] S. Reza, M. C. Ferreira, J. J. M. Machado, and J. M. R. S. Tavares, “A 
multi-head attention-based transformer model for traffic flow 

forecasting with a comparative analysis to recurrent neural networks,” 

Expert Syst. Appl., vol. 202, p. 117275, Sep. 2022, doi: 
10.1016/j.eswa.2022.117275. 

[18] S. Xu, R. Zhang, H. Ma, C. Ekanayake, and Y. Cui, “On vision 

transformer for ultra-short-term forecasting of photovoltaic generation 
using sky images,” Sol. Energy, vol. 267, p. 112203, Jan. 2024, doi: 

10.1016/j.solener.2023.112203. 

[19] S. F. Stefenon, L. O. Seman, L. S. A. Da Silva, V. C. Mariani, and L. 
D. S. Coelho, “Hypertuned temporal fusion transformer for multi-

horizon time series forecasting of dam level in hydroelectric power 

plants,” Int. J. Electr. Power Energy Syst., vol. 157, p. 109876, Jun. 
2024, doi: 10.1016/j.ijepes.2024.109876. 

[20] E. Lezmi and J. Xu, “Time Series Forecasting with Transformer 

Models and Application to Asset Management,” SSRN Electron. J., 
2023, doi: 10.2139/ssrn.4375798. 

[21] H. S. Oliveira and H. P. Oliveira, “Transformers for Energy Forecast,” 

Sensors, vol. 23, no. 15, p. 6840, Aug. 2023, doi: 10.3390/s23156840. 
[22] S. Bhanja and A. Das, “Deep Neural Network for Multivariate Time-

Series Forecasting,” in Proceedings of International Conference on 

Frontiers in Computing and Systems, vol. 1255, D. Bhattacharjee, D. 
K. Kole, N. Dey, S. Basu, and D. Plewczynski, Eds., in Advances in 

Intelligent Systems Springer and Computing, vol. 1255. , Singapore: 

Singapore, 2021, pp. 267–277. doi: 10.1007/978-981-15-7834-2_25. 
[23] E. Alerskans, J. Nyborg, M. Birk, and E. Kaas, “A transformer neural 

network for predicting near-surface temperature,” Meteorol. Appl., vol. 

29, no. 5, p. e2098, 2022, doi: 10.1002/met.2098. 
 


