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Abstract

The application of meta-heuristic algorithms has significant potential in various fields, including wireless sensor networks. In this paper, we
utilize two algorithms, the Fruitfly optimization algorithm (FOA) and the Nutcracker optimization algorithm (NOA), to address two critical
issues: optimizing coverage and ensuring connectivity in sensor networks. The main contribution of this paper is the application of these
algorithms to arbitrary communication radius, independent of predefined connectivity assumptions. Simulation results demonstrate the
effectiveness of the proposed methods by comparing with each other and with the two traditional algorithms Genetic Algorithm (GA) and
Particle Swarm Optimization (PSO). Additionally, this paper simulates the coverage area in an environment with different types of obstacles to
showcase the practical flexibility of the algorithms.
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Symbols
Symbols Units Description
A set of monitoring points
B set of obstacles
S set of sensor nodes
rc m communication radius
rs m sensing radius

Abbreviations
WSNs Wireless Sensor Networks
CC-CM Connectivity Constrained - Coverage

Maximization
NP-hard Problem Non-deterministic Polynomimal time

hard problem
NOA Nutcracker Optimization Algorithm
FOA Fruitfly Optimization Algorithm

1. Introduction

Wireless Sensor Networks (WSNs) can be considered a
distributed system, which contain a large number of sensor
nodes that have abilities of monitoring data and communicating
wirelessly. The idea is to use those nodes to collect
environmental data, then transfer them to a special node
(called Base station or Sink node) for further analyzing and
decision-making. Thanks to the flexible architecture of WSNs,
it can be used in a considerable range of applications such
as Internet of Things[1], Smart building monitoring[2] and
Military purposes [3],...

In the operation of WSNs, one of the main challenges is the
deployment of sensor nodes. To evaluate the effectiveness
of node localization, some common metrics are introduced,
which can be listed as coverage, energy consumption,
network lifetime and connectivity [4]. This paper focuses
on the work of maximizing the coverage ratio while
ensuring connectivity constraint, which is categorized as
the Connectivity Constrained - Coverage Maximization
problem (CC-CM) [5]. The CC-CM is a Non-deterministic
Polynominal time (NP-hard) problem [4]. This type of problem
is computationally and chronically expensive to find a global
optimal solution. Popular approaches for NP-hard problems
are meta-heuristic algorithms [6] as they are more flexible in
searching the global solution field with less time and resources.

In the perspective of solving the Coverage Maximization
problem only, number of researches have been published
making use of the supreme performance of meta-heuristic
algorithms. In [7], Jianghao proposes the Yin-Yang
Pigeon-inspired optimization algorithm to maximize coverage
ratio of a sensor network in a rectangular area, results show
that the algorithm works well with simple scenarios but do
not mention the problem of more complex environments.
Zhendong Wang et al.[8] applies the improved Grey wolf
optimizer to solve node coverage maximization with obstacles
in a rectangular area. The authors design a new nonlinear
convergence factor instead of the old linear one to balance the
global and local search.

In some researches, both Connectivity constraint and Coverage
Maximization problems are considered, making the CC-CM
problem. In [9], an algorithm based on the Genetic Algorithm,
called IDDT-GA is proposed to maximize the coverage ratio
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while lowering the number of sensor nodes. Results show
that the use of IDDT-GA comes out with superior solutions
compared to other algorithms such as Immune Algorithm (IA),
Harmony Search (HS) and Whale Optimization Algorithm
(WOA). On the other hand, Nematzadeh [10] suggests utilizing
the improved version of Grey Wolf Optimization named as
Mutant-GWO. The research has focused on the work of creating
a network topology while maximizing coverage of custom
areas. However, to the best of our knowledge, most of the
researches solving the problem of connectivity constraint make
use of a condition of communication range which mentioned in
[11]. This condition helps simplify this problem to the coverage
maximization problem as [11] proves that connectivity will
always be ensured if the covered region is convex and the
communication range is more than twice of sensing range.
The key contributions of this paper are as follow:

• This paper introduces the task of solving the CC-CM
problem with any value of ratio between communication
range and sensing range.

• Two nature-inspired algorithms are adopted and modified
to maximize the coverage ratio and maintain the
connectivity constraint simultaneously. After that, their
performances are compared to other classical algorithms.

• Deployment simulations are firstly held on a basic plain
rectangular space, after that, some custom areas are
selected for node placement in order to serve further
practical purposes.

The structure of this paper is organized as: Section 1 presents
introduction to the CC-CM problem and literature survey.
Section 2 constructs the mathematical formulation of the
system model and the two metaheuristic algorithms. Section 3
illustrates simulation results and discussion of the algorithms’
performance. Final section shows the conclusion and future
works.

2. Methodology

This section firstly introduces formulation of the network
model and the two main problems of coverage and connectivity.
Secondly, two meta-heuristic solutions Nutcracker and Fruitfly
are studied to enhance theirs performance on solving the
CC-CM problem. The network model in this paper is built
upon the foundation established in Reference [14] while the
two meta-heuristic algorithms are grounded in the principles
outlined in [12] and [13].

2.1. Mathematical formulation

2.1.1. System model

The objective of this paper is to find a node deployment that
maximize coverage ratio while ensuring connectivity within
a monitoring region with a condition of any communication
range values, as previously mentioned. The monitoring area
is a two-dimensional rectangular space divided into a finite
set of points (A) with X ×Y coordinates. The set of obstacles
is denoted as B = {bn | n = 1,OB}, where each element bn
(xn,yn) is a point in total of OB points representing the location
of an obstacle. A set of sensor nodes S = {sn | n = 1,N} is
deployed across the area which represents the solution vector.
Each sensor has a communication radius rc and a sensing radius

rs. The Euclidean norm denoted as ∥ · ∥ . Our assumptions are
as follows:

• All sensors are homogeneous and static.
• The network uses the binary Boolean disk sensor model.
• A point ki is covered by a sensor s j if ∥s j − ki∥ ≤ rs.
• The fully connected constraint is defined as there is at

least one path for every sensor node to transfer data to
sink node.

• Sensors sl are counted as connected with sm if ∥sl −sm∥≤
rc.

Firstly, the following definitions are established:

• The space covered by the sensor group S is defined as a
set of points that are in at least one sensor’s coverage zone
and are not in obstacle set B:

Area(S) =
X×Y

∑
n=1

min

(
1,

N

∑
m=1

K(sm,kn)

)

where K(s,k) =

{
1, if ∥s− k∥ ≤ rs and k /∈ B,
0, otherwise.

(1)

• A set Li is defined as set of local sensors connected with
the i-th sensor:

Li = { j = 1,N, ∥si − s j∥ ≤ rc, j ̸= i} (2)

• A decision variable c is defined as:

ck
n =


1, if the n-th sensor connects to the

sink via k other sensors, k = 1,N
0, otherwise.

(3)

The paper aims to maximize the coverage ratio in the
unobstructed space while ensuring full connectivity. Hence,
the fitness function is formulated as:

• Maximize the coverage ratio of the area of interest:

Maximize Cov(S) =
Area(S)

X ×Y −OB
(4)

• Subject to the connectivity constraint:

ck
n ≤ ∑ck−1

m where k = 1,N, m ∈ Ln (5)

Further explanations of the fitness function and the constraint
are demonstrated in following Fig. 1 and Fig. 2:

In Fig. 1, a deployment of 6 nodes in a 100 × 100 m2

environment with a rectangle obstacle is presented. The green
points represent interest area that is covered by the sensor
network while the red points represent for the obstacle area
that are covered by the network. As the constraint of obstacle
avoiding has not been applied, there is a node that stuck inside
the obstacle. Following the formula 4, the coverage can be
calculated as taking the ratio between the green points and the
white area points.
Figure 2 illustrates the two samples of a unconnected and
connected network. Formula 5 is implemented using Graph
Theory through the number of connected components in
the network’s Graph. In Fig. 2b, the network maintains
connectivity as all the six nodes contribute to one connected
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Figure 1: Coverage Ratio Calculation

component, leading to the fact that always exist at least a path
from every node to the Node 1. On the other hand, Fig. 2a
shows a case that the network loses its connectivity as the six
nodes generate two connected components making node 4, 5
and 6 do not have any paths to communicate with the node 1, 2
and 3.

2.1.2. Connectivity Constraint & Coverage Maximization

The CC-CM problem focuses on finding a combination of
sensor locations such that those sensor nodes form a network
that satisfies the connectivity condition while maximizing
its coverage. Initialization is the first step to establish the
first populations of solution. This paper uses a constrained
stochastic initialization method where sensors’ positions are
randomly generated in a small surrounding space of the
sink node which easily ensuring connectivity constraint and
avoiding any overlap with obstacles.
After that, the initial solutions need to be optimized to
improve overall coverage ratio and minimize overlapping or
uncovered areas. Metaheuristic algorithms such as Nutcracker
optimization and Fruitfly optimization are chosen to identify
optimal positions for the sensor group to maximize the fitness
function. These algorithms simulate nature-inspired processes
and can gradually improve the sensor positions to achieve better
coverage. At every step of adjusting the positions of the sensors,
it is compulsory to ensure that connectivity is maintained
and obstacles are avoided. This is achieved by restricting the
movement of the sensors within the communication radius rc
from neighboring sensors and performing thorough check at
each iteration of the optimization phase. With this approach,
the system not only optimizes coverage effectively and ensures
connectivity but also maintains feasibility and stability in
environments with complex obstructions.

2.2. Proposed solutions

2.2.1. Nutcracker optimization algorithm

Clark’s Nutcrackers are solitary birds with grey pale and black
wings. Their main food source is pine seeds. [12] They prefer
to choose top-quality seeds because of the bigger size and

(a) Unconnected network

(b) Connected network

Figure 2: Connectivity constraint explanation

easier harvesting, and they would tend to collect them on
the tree with a large cone density. They store pine seeds in
numerous storages in the autumn, then they will use their
spatial memory to recall these locations in the winter. The
Nutcracker Optimization Algorithm (NOA) is inspired by their
intelligence, which involves two key phases: (1) The foraging
and storage strategy and (2) The cache-search and recovery
strategy.

In the first strategy, nutcrackers search for seeds at pine cones,
each nutcracker inspects the potential locations. If the food is
not promising, they will seek another cone in another position
within pine trees or other trees. This behaviour is defined as the
first exploration phase. Otherwise, they will transfer the food
to caches, which is called the first exploitation phase. In the
second strategy, nutcrackers use spatial memory and nearby
cues to retrieve caches during winter. Two reference points
(RPs) are defined to mimic this behavior, in which the 1st RP
refines the current position for local exploration, while the 2nd

RP expands the search space to explore new regions for hidden
caches. This behaviour is defined as the second exploration
phase. A clear explanation of the algorithm is demonstrated in
Algorithm 1.
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The main idea of the purposed solution inspired by NOA
is utilizing the searching capacity with high convergence
speed and escape ability from the local optimum to reach
the near-optimal solution. The operation of NOA relies on
three main parameters: Pa1 for adjusting the rate of updates
to the current solution in the unexplored areas for covering
intractable regions, Pa2 for determining the switch between
cache-search and recovery stages, and δ for considering if the
current solution will be updated within the upper and lower
bound of the optimization problem to control the ability of
avoiding local optima [12]. The smaller of δ , the more effort
of searching the solutions globally in the problem instead of
exploring around a specific solution.
In this paper, the purposed NOA is adjusted to adapt the
problem scale and to utilize the searching capacity with high
convergence speed and escape ability from local optimum
to reach the near-optimal solution. Specifically, the created
reference points have to satisfy the obstacles constraint.
The position of agents updated by using reference points
will be done successfully after achieving the satisfaction of
connectivity condition.

Algorithm 1: Nutcracker Optimization Algorithm
Input: Parameter A, B, N, rc, rs, MaxIt, nPop, Pa1 , Pa2 , δ

Output: Best solution and best fitness
1: Initiate nPop nutcrackers S1,S2, ...SnPop, which S j =

{s j
i | i = 1,N}

2: for t = 1 : MaxIt do
3: for j = 1 : nPop do
4: Generate σ , σ1, φ , ϕ in the range of [0,1]
5: if σ < σ1: /* First strategy */
6: if φ < Pa1 : /* Exploration phase 1 */
7: Update S j by searching food behaviour

using δ

8: else: /* Exploitation phase 1 */
9: Update S j by caching behaviour
10: end if
11: else: /* Second strategy */
12: Generating RP matrix
13: if ϕ < Pa2 : /* Exploration phase 2 */
14: Update S j by using spatial memory
15: else: /* Exploitation phase 2 */
16: Update S j by recovering cache behaviour
17: end if
18: end if
19: end for
20: Update best solution and best coverage rate
21: end for

2.2.2. Fruitfly optimization algorithm

The Fruitfly Optimization Algorithm (FOA) [13] is inspired
by nature, based on the foraging behavior of fruitfly. The
characteristic of fruitflies is their ability to quickly detect
food sources due to their superior sense of smell and vision
compared to other species. First, they use their sense of smell to
gather scents from the air to determine the direction of the food
source. Once the direction is established, they move towards
the food source and they get closer, they use their vision to
accurately approach the food source and begin to exploit it.
Detailed steps for implementing the FOA in CC-CM problem
are as follown in Algorithm 2.

Algorithm 2: Fruitfly Optimization Algorithm
Input: Parameter A, B, N, rc, rs, MaxIt, nPop, step size
Output: Best solution and best fitness
1: Setup Parameters , initiate nPop flies

S1,S2, ...SnPop, each fly is a solution containing the
initial positions of the nodes S j = {s j

i | i = 1,N}
2: for It = 1 to MaxIt do
4: for i =1 to nPop do
5: A position of node i in solution j-th is

randomly chosen: s j
i

6: s j′
i = s j

i +(2*step*rand(0,1) - step).
7: if S j′ satisfies connectivity constraint:
8: if Cov(S j′) > Cov(S j)

9: S j = S j′

10: end if
11: end if
12: end for
13: Update best solution and best coverage rate
14: end for

A large step size allows the algorithm to quickly cover the
search space, explore more potential regions and converge
faster. However, its local search ability is quite weak. A small
step size allows the algorithm to explore the surrounding area of
a region, allowing for more precise adjustments and potentially
leading to better results. However, its global search ability is
weak, it may get stuck in a local optimum and the convergence
speed is reduced. It is necessary to choose a step size that is
appropriate to the problem. Each node will be adjusted with
a small amount of variation, rand(0,1) is a random number
between 0 and 1; thus, the range of the additional values is
in [-step, step]. In this situation, a step size of 30 is selected
because the maximum value of it allows nodes to move to
the further corner of the map, which reduces the number of
iterations required and the possibility of getting stuck in a local
optima.

3. Results and Discussion

All simulation studies are conducted in Python environment
on an Ubuntu Computer equipped with Intel Ultra 155H CPU
and 32GB RAM. Parameters used for network and algorithms
simulation are clearly shown in Table 1. In case study 1, the
monitoring area is a plain rectangle region, this focuses on
the basic cases of changing the number of nodes and the
communication radius to observe the performance of the two
algorithms FOA and NOA comparing to two well-known
algorithm GA and PSO under different circumstances of
communication ranges. In case study 2, simulations of 60 nodes
deployment on 2 different regions, firstly on an area with a
rectangular obstacle and secondly on the map layout of a part of
Hanoi University of Science and Technology (HUST) campus
in Vietnam, are presented to verify the practical flexibility of
the two algorithms when deploying in real environment.

3.1. Case study 1

Firstly, this case study emphasizes the superior advantage of
this paper’s propose solution that its deployment solutions do
not depend on condition of the ratio between communication
range and sensing range. This means that the algorithms
can come out with solutions that will fully maintain the
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Table 1: The network and algorithms parameters

Network Model
Parameter Value
Selected area (A) 100 m × 100 m
Sensing range (rs) 10 m
Communication range (rc) 10, 15, 20 m
Number of sensors (N) 40, 60
Iterations (MaxIt) 2000
Population size (nPop) 50

Fruitfly Optimization
step size (step) 30

Nutcracker Optimization
Pa1 0.2
Pa2 0.2
δ 0.05

Genetic Agorithm
Crossover rate 0.7
Mutation rate 0.01

Particle Swarm Optimization
Inertia Coefficient 1
Personal Acceleration Coefficient 1.5
Social Acceleration Coefficient 2

connectivity constraint as well as be capable of working with
any values of communication radius filled in the network
parameter.
Based on the chart in Fig. 3, it is noticeable that when
the communication radius increases, the coverage rate also
increases. In 40-nodes case, it can be claimed that the
performances of NOA and FOA are relatively comparable
in all cases and the results completely outperform those of
the traditional algorithms GA and PSO. It can be easily
seen that GA is not suitable in the use of constrained first
population, as the crossover phase changes the position
of the sensor node dramatically, which easily violate the
connectivity constraint. Therefore, the results of GA do not
change significantly when the scenario is modified. PSO,
although yielding results inferior to the two algorithms NOA
and FOA, still produces progressively better outcomes when
relaxing the conditions on the ratio between rc and rs or
increasing the number of sensors, demonstrating its suitability
for the constrained deployment method. On the other hand,
the coverage experiences a remarkable expand to 92.76% and
94.93% when the communication-sensing ratio increases from
rc = rs to rc = 1.5rs using FOA and NOA, respectively. In
addition, a small coverage improvement of about 5% in case
of rc = 2rs as most of the easy-to-reach area has been covered.
In 60-nodes case, the coverage value obtained by NOA easily
achieved 94.96% in rc = rs case, and 100% coverage in other
2 cases, whereas the performance of FOA is slightly worse.
Fig. 3 indicates that regarding various cases, both FOA and
NOA significantly outperform the traditional algorithms and
successfully resolve a CC-CM with a random ratio between
communication range and sensing range.
To conclude, with the condition of rc = 2rs both high coverage
and connectivity conservation tasks are more effortless to
achieve no matter of the algorithms used. Therefore, this paper
solves a more complicated problem when successfully resolve
a CC-CM with a random ratio value between communication
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Figure 3: Comparison of the coverage rates between GA, PSO,
FOA and NOA in case of different numbers of nodes and
communication-sensing radius ratio.

range and sensing range.

3.2. Case study 2

Fig. 4 and Fig. 5 illustrate the 40 and 60 nodes placement in
the area containing a rectangular obstacle, which is located
by two corner points (60, 80) and (80, 20). Initialized node
positions tend to concentrate around the sink node, and they
are distributed more evenly through the iterations. In the case
of 40-node demonstrated in Fig. 4a and Fig. 4b, both of the two
algorithms comes out with nearly 80% of coverage as the area
in the side of obstacle-free is effectively covered. Performance
of the two algorithms shows an area that is hard to cover which
is behind the obstacle. Both of the algorithms fail to reach
the other side of the obstacle as there is no sensor node cover
the eastern side of the map. However, there are signs of FOA
reaching into hard-to-reach areas as some of the nodes attempt
to search that area in both southeast and northeast corners;
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(a)

(b)

Figure 4: 40 nodes deployment in rectangular obstacle case using (a)
FOA (b) NOA

however, due to the relatively small number of sensors, it is not
sufficient to cover that part.
Furthermore, it can be easily seen that the farther the area
from the initial source base, the more sparsely distributed the
nodes are due to the random factors in the algorithm, and the
degree of sparsity will be greater with the appearance of the
obstacles. This behavior of FOA is clearly shown in Fig. 5b.
Despite of considerably increasing the number of sensor nodes
deployed, there is still a small area in the bottom right corner
of the map is not covered. In contrast, demonstrated in Fig. 5a,
NOA seems to distribute sensor nodes more evenly, resulting
in a slightly higher coverage ratio of over 99% coverage. This
indicates that the ability to avoid obstacles and the flexible
searching ability of NOA in this case are better than FOA. The
results obtained from FOA and NOA are relatively satisfactory
and can be applied as the deployment is able to avoid the
prohibited area while covering up to nearly 100% of the
necessary space. However the case of a ordinary rectangle

(a)

(b)

Figure 5: 60 nodes deployment in rectangular obstacle case using (a)
FOA (b) NOA

obstacle is not practical as real world cases performs highly
fragmented or irregular obstacle layouts.

In order to deal with that problem, regarding from Fig. 6 and
Fig. 7, a building terrain is used to examine the flexibility of
the two algorithm in 40 and 60 node-deployment, respectively.
The obstacle-filled environment taking from a real location
showcasing the square area of C1 building in Hanoi University
of Science and Technology is obtained by firstly filtering for
locations of buildings, which is considered as obstacles, based
on brightness thresholds. After that, the map is resized to
100 ×100 bitmap and encoded to a matrix map with value
0 representing the interest points and the value -1 represents
the obstacle points that are moved to set B. In the case of
more complicated obstacles, such as buildings in the terrain,
the behavior of FOA and NOA in finding the best solution is
more obvious. Fig. 6 shows the case of 40-node deployment
generated by the two algorithms. It can be easily seen that the
lack of nodes number leads to relatively low coverage ratio
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(a)

(b)

Figure 6: 40 nodes deployment in building obstacles case using (a)
FOA (b) NOA

and the corner regions have not been accessed. However, the
final coverage ratio of both algorithms still reach over 70% as
the center of the terrain is nearly fully covered. Additionally,
each algorithm exploits the southern space relatively well since
that area is not blocked by a long building as in the north.
On the other side, due to the randomness of the algorithm,
FOA explores the northwest region of the map while NOA
successfully covered half of the northern area located behind
the long building.
Even though the nodes number increases to 60 nodes, in Fig.
7b, the inaccessible areas such as the area at 1 o’clock and 5
o’clock corners, which are isolated due to the surrounding
obstacles, or the neighboring areas are not fully covered.
Similarly, in the upper side of the map, there are several areas
are significantly uncovered when deploying by NOA. However,
the coverage rate is faintly higher with respect to FOA in Fig.
7a. Another point that should be noticed is that the number
of uncovered regions in FOA is less than NOA and they are
often concentrated in hard-to-reach areas, however, the area

(a)

(b)

Figure 7: 60 nodes deployment in building obstacles case using (a)
FOA (b) NOA

of these regions is larger. On the other hand, the uncovered
areas of NOA are insignificant and more scattered in the
monitoring region. The NOA algorithm in this case leads the
coverage value with 96.03%. Nevertheless, FOA and NOA have
both shown their potential for practical applications through
diverse types of terrain. In addition, each algorithm presents
unique strengths and weaknesses, highlighting the need for a
strategic selection depending on the environmental conditions
and specific coverage requirements.

4. Conclusion

In this paper, we have successfully applied the FOA and NOA
algorithms to solve the CC-CM problem in obstacles-filled
environments. Unlike traditional approaches that make use
of the communication-sensing radius ratio assumptions, our
method accommodates sensors with arbitrary communication
ranges and the performance has been validated by comparing
with other well-known algorithms. Furthermore, the two
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algorithms’ superior performance are proved through scenarios
with both ideal and real-world obstacles, highlighting its
practical applicability. However, our simulation of monitoring
area is limited to two-dimensional spaces and relies on the
binary Boolean disk model, which may not fully reflect
sensor characteristics in practice. Future works will focus on
extending the proposed approach to three-dimensional spaces
and more complex and noisy environments, incorporating
sensors with varying radius and more realistic coverage models
to enhance the accuracy and applicability of the system.

Acknowledgement

This research is funded by Hanoi University of Science and
Technology (HUST) under project number T2024-TĐ-013.

References

[1] H. Baniabdelghany, R. Obermaisser and A. Khalifeh, "Reliable Task
Allocation for Time-Triggered IoT-WSN Using Discrete Particle Swarm
Optimization," in IEEE Internet of Things Journal, vol. 9, no. 14, pp.
11974-11992, 15 July15, 2022. doi: 10.1109/JIOT.2021.3132452.

[2] K. Zhang, K. Yang, S. Li, D. Jing and H. -B. Chen, "ANN-Based
Outlier Detection for Wireless Sensor Networks in Smart
Buildings," in IEEE Access, vol. 7, pp. 95987-95997, 2019.
doi: 10.1109/ACCESS.2019.2929550.

[3] C. Ma, T. Zuo and H. -F. Zhang, "Network Shortest Path Interdiction
Problem Based on Generalized Set Coverage," in IEEE Transactions
on Network Science and Engineering, vol. 11, no. 2, pp. 2191-2203,
March-April 2024. doi: 10.1109/TNSE.2023.3341452.

[4] Z. Fei, B. Li, S. Yang, C. Xing, H. Chen and L. Hanzo, "A Survey of
Multi-Objective Optimization in Wireless Sensor Networks: Metrics,
Algorithms, and Open Problems," in IEEE Communications Surveys
& Tutorials, vol. 19, no. 1, pp. 550-586, Firstquarter 2017. doi:
10.1109/COMST.2016.2610578.

[5] Le. Duc, Oh. Hoon, Yoon. Seokhoon. "Environment Learning-based
Coverage Maximization with Connectivity Constraints in
Mobile Sensor Networks," IEEE Sensors Journal, 2016. doi:
10.1109/JSEN.2016.2537840.

[6] Z. Hussain, "Metaheuristic Applications and Their Solutions
Quality," 2005 International Conference on Information and
Communication Technologies, Karachi, Pakistan, 2005, pp. 101-104.
doi: 10.1109/ICICT.2005.1598560.

[7] J. Yin, N. Deng, J. Zhang, "Wireless Sensor Network coverage
optimization based on Yin–Yang pigeon-inspired optimization
algorithm for Internet of Things," Internet of Things, Volume 19, 2022,
100546. doi: 10.1016/j.iot.2022.100546.

[8] Z. Wang, Xie. Huamao, Hu. Zhongdong, Li. Dahai, W. Junling, L. Wen.
"Node coverage optimization algorithm for wireless sensor networks
based on improved grey wolf optimizer," Journal of Algorithms &
Computational Technology, 2019. doi: 10.1177/1748302619889498.

[9] H. ZainEldin, M. Badawy, M. Elhosseini, "An improved dynamic
deployment technique based-on genetic algorithm (IDDT-GA)
for maximizing coverage in wireless sensor networks," J
Ambient Intell Human Comput 11, 4177–4194, 2020. doi:
10.1007/s12652-020-01698-5.

[10] S, Nematzadeh, M. Torkamanian-Afshar, A. Seyyedabbasi,
"Maximizing coverage and maintaining connectivity in WSN and
decentralized IoT: an efficient metaheuristic-based method for
environment-aware node deployment," Neural Comput & Applic 35,
611–641 , 2023. doi: 10.1007/s00521-022-07786-1.

[11] W. Xiaorui, X. Guoliang, Z. Yuanfang, L. Chenyang, P. Robert, G.
Christopher, "Integrated Coverage and Connectivity Configuration
in Wireless Sensor Networks," SenSys’03: Proceedings of the First
International Conference on Embedded Networked Sensor Systems,
2003, 1, 28-39. doi: 10.1145/958491.958496.

[12] M. Abdel-Basset, R. Mohamed, M. Jameel and M. Abouhawwash,
"Nutcracker optimizer: A novel nature-inspired metaheuristic
algorithm for global optimization and engineering design problems,"
Knowledge-Based Systems, 262:110248, 2023, pp. 3-12. doi:
10.1016/j.knosys.2022.110248.

[13] Pan. Wen-Tsao, "A new Fruit Fly Optimization Algorithm: Taking the
financial distress model as an example, Knowledge Based Systems" -
KBS, 26, 2012. doi: 10.1016/j.knosys.2011.07.001.

[14] H. N. Minh Vu, S. Tran, D. M. Phan, A. Hoang, and D.
C. Hoang, "Maximising Coverage Under Connectivity Constraint
Utilising Nature-Inspired Algorithms: A Comparative Analysis," in
2023 Asia Meeting on Environment and Electrical Engineering
(EEE-AM), Hanoi, Vietnam: IEEE, Nov. 2023, pp. 01–06. doi:
10.1109/EEE-AM58328.2023.10395009.


	Introduction
	Methodology
	Mathematical formulation
	System model
	Connectivity Constraint & Coverage Maximization

	Proposed solutions
	Nutcracker optimization algorithm
	Fruitfly optimization algorithm


	Results and Discussion
	Case study 1
	Case study 2

	Conclusion

