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Abstract 
 
This paper presents a cooperative coevolutionary optimization algorithm to overcome issues in gradient descent-based neural network, such 

as getting stuck in local minimum and slow convergence. The proposed method combines JAYA and a modified differential evolution (DE) 

techniques to optimize neural network weights. It works by splitting the population into two subpopulations, each focusing on optimizing 

different aspects of the network weights. The method's effectiveness is tested on two benchmark nonlinear dynamical systems and compared 

with existing methods. Results show that the neural network optimized by this approach achieves high accuracy and robustness. Finally, the 

practical applicability of this method is demonstrated by modeling the pneumatic muscle actuator (PMA) system using experimental data, 

where the PMA system is made up of Festo's MAS-10 N220 pneumatic artificial muscles and controlled with a DAQ NI 6221 card. 

 

Keywords: Coevolutionary algorithm; Optimized Neural network; Nonlinear system identification; Jaya algorithm; 

Differential evolution.

Abbreviations 

DE Differential evolution 

PMA 
MSE 

CoDEJA 

CEAs 

pneumatic muscle actuator 

Mean square error 

Coevolutionary based DE and JAYA 

Coevolutionary algorithms 

1. Introduction 

Identifying nonlinear black-box models of dynamical 

systems involves finding system characteristics based on 

measured input and output signals by minimizing the error 

norm between measured data and model output. Recent 

research has explored various approaches, including 

feedforward neural networks [1], LSTM neural networks [2], 

neuro-fuzzy systems [3], and other hybrid intelligent methods 

[4]. Among these, optimizing weights and biases remains a 

critical task in neural networks. Over the past decade, 

gradient-based methods have been widely studied but still 

face limitations such as local minima and slow convergence, 

which degrade system identification performance. 

To address these issues, evolutionary algorithms (EAs) 

have been explored for optimizing neural network weights 

and biases. For instance, Xiong et al. [5] applied differential 

evolution to optimize the number of hidden neurons and the 

regularization factor of hierarchical extreme learning 

machines for fault section diagnosis in large-scale power 

systems. Liu et al. [6] used differential evolution to train 

neural network-based control parameters for power electronic 

circuits. Nguyen et al. [7] proposed a modified differential 

evolution algorithm for optimizing neural networks in time 

series forecasting. Min et al. [8] introduced a neural network-

optimized genetic algorithm for energy management 

strategies in hybrid electric vehicles under start-stop 

conditions. Nguyen et al. [9] applied the Jaya algorithm to 

optimize neural network weights for uncertain nonlinear 

system identification. Mao et al. [10] developed a 

biogeography-based optimization algorithm for multilayer 

perceptron networks in nonlinear system identification. 

However, EAs often struggle to find global solutions for 

large-scale problems within limited computational time. 

Coevolutionary algorithms (CEAs) have been developed 

to address complex problems through a divide-and-conquer 

approach. Unlike EAs, which evolve a single population with 

one leading individual, CEAs evolve multiple populations 

simultaneously, each with multiple leading individuals. This 

enhances the balance between exploration and exploitation 

and helps prevent premature convergence.  

For example, a co-evolutionary bird optimization 

algorithm combined with an online policy gradient method 

was introduced to solve continuous real-parameter 

optimization problems [11]. A knowledge-driven 

coevolutionary algorithm combined differential evolution 

(DE) and estimation of distribution algorithm through a cross-

regional interactive learning mechanism to improve 

performance [12]. A modified competitive swarm optimizer 

(CSO) using a three-phase coevolutionary strategy was also 

proposed to enhance CSO performance [13]. 

Recently, CEAs have been applying to optimize neural 

network weights. Triumala et al. [14] introduced a multi-

population cooperative neuro-evolution approach, while 

Gong et al. [15] combined cooperative coevolution with 

backpropagation. Wei et al. [16] developed a coevolutionary 

particle swarm optimization for manipulator control, and 

Liang et al. [17] proposed a cooperative coevolutionary JADE 

to evolve both topology and weights. Ayala et al. [18] applied 

differential evolution and harmony search for RBFNN 

optimization, and Xue et al. [19] combined differential 

evolution with Adam-based gradient descent for feedforward 

networks. 

Jaya and differential evolution algorithms have been 

widely applied in areas such as scheduling [20], wireless 

sensor networks [21], and parameter estimation [22]. The Jaya 
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algorithm offers advantages such as simplicity, efficiency, 

and no control parameters, making it suitable for complex 

problems. Differential evolution is also favored for its fast 

convergence and the need for only three control parameters. 

Based on the above analysis, this paper presents a 

cooperative coevolutionary algorithm to optimize neural 

networks (named CoDEJA-NN), aiming to overcome local 

minimum and slow convergence issues in gradient-based 

methods. The proposed algorithm combines differential 

evolution and the Jaya algorithm by dividing the initial 

population into two subpopulations, each responsible for 

optimizing different aspects of the neural network. The 

method is evaluated through three nonlinear dynamical 

system identification tasks and compared against existing 

algorithms to verify its effectiveness. 

The remainder of the paper is organized as follows. 

Section 2.1 introduces the PMA system configuration. 

Section 2.2 describes the proposed CoDEJA-NN model for 

system identification. Section 2.3 presents performance 

evaluation and discussion. Section 2.4 applies the proposed 

method to PMA system modeling. Section 3 concludes the 

paper. 

2. Main body 

2.1 Pneumatic muscle actuator (PMA) setup 

A block diagram of the experimental pneumatic muscle 

actuator (PMA) architecture is shown in Fig.1, and the photo 

of the PMA system as Fig.2. The parameters of the PMA 

system are described in Table 1 and Table 2. 
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Figure 1: Diagram of the experimental PMA system 

 

Figure 2: Diagram of the experimental PMA system 

The PMA system is a 1-DOF motion platform actuated by 

PMAs, equipped with a coil spring for passive force 

compensation and a rotary encoder for angle measurement. 

Airflow is regulated by proportional valves (EV2500-008), 

and a National Instruments PCI 6221 card handles real-time 

data acquisition and control. Control algorithms are 

implemented in Matlab using the Real-Time Windows Target 

Toolbox with a sampling time of Ts = 0.01 s. 

Table 1: Mechanical parameters of PMA system 

Parameter Notation Value Unit 

Length link 1 l1 15 cm 

Distance between two rotary joints d 20 cm 

Diameter of pulley  3 cm 

Stiffness of spring k 500 N/m 

Table 2: Experimental device parameters of PMA system 

No Devices Parameters 

1 
PMA: Festo 

MAS-10 N220 

- Nominal length: 22 cm 
- Internal diameter: 10 mm 

- Operating pressure: 0-8 bar 

2 
Encoder: 
Autonics 

E40S6-3600 

- Rotary encoder. 
- Resolution: 3600 pulses per revolution. 

- Power supply: 24 V ± 10%  

3 
DAQ card: NI 

PCI 6221 

- Two 16-bit analog outputs (833 KS/s) 
- 24 digital I/O. 

- 16 Analog Inputs, 16-Bit, 250 KS/s 

4 
Proportional 

valse EV2500-

008 

- Power: DC 24 V (± 10% tolerance) 

- Control Pressure Range: 0 to 0.49 Mpa. 

- Input Signal: 0-10 V DC 
- Resolution: 0.5% of Full Scale (F.S.) 

 

2.2 The proposed cooperative coevolutionary 

algorithms-based neural networks 

2.2.1 Neural networks training problem 

The structure of neural networks includes n inputs, q 

which,Inoutputs.mandneurons,hidden 𝑿 =
[𝑥𝑏𝑖𝑎𝑠, 𝑥1, … , 𝑥𝑛]𝑇  and 𝒀 = [𝑦1, . . , 𝑦𝑚]𝑇  are the input and 

respectively.networks,neuralofoutput 𝑽 =
[𝑣10 𝑣11 … 𝑣1𝑛 , 𝑣𝑞0, … 𝑣𝑞𝑛]  denotes the weights of the 

input.biasandlayerinput 𝑾 =
[𝑤10 𝑤11 … 𝑤1𝑞 , 𝑤𝑚0, … 𝑤𝑚𝑞]  denotes the weights of 

hidden layer and bias. f(.) and F(.) are the active functions of 

the hidden and output layers. 

The output of neural networks is defined as follows, 

𝑦̂𝑙(𝑘, 𝜃) = 𝐹𝑙(∑ 𝑤1𝑖𝑓𝑖(∑ 𝑣𝑖𝑗𝑥𝑗(𝑘) + 𝑣𝑖0
𝑛
𝑗=1 ) + 𝑤10

𝑞
𝑖=1 ) (1) 

Where, 𝑙 ∈ [1, 𝑚] . The weights are denoted as 𝜽 =
[𝜃1, 𝜃2, … , 𝜃𝐷] which D is the number weights of hidden and 

output layers. The dimension of D is calculated as, 

𝐷 = 𝑞(𝑛 + 1) + 𝑚(𝑞 + 1) (2) 

To optimize the weights and bias of neural networks 𝜽 by 

minimizing the criteria mean square errors (MSE) which is 

defined as, 

𝐽(𝜃, 𝑍𝑁) =
1

2𝑁
∑ ∑ [𝑦𝑙(𝑘) − 𝑦̂𝑙(𝑘|𝜃)]𝑇[𝑦𝑙(𝑘) − 𝑦̂𝑙(𝑘|𝜃)]𝑚

𝑙=1
𝑁
𝑘=1  (3) 

Where, ZN is the training data set which is defined by 𝑍𝑁 =
{[𝑿(𝑘), 𝒀(𝑘)]|𝑘 = 1, . . . , 𝑁}. N is the number of sample data. 

2.2.2 Jaya algorithm-based neural network 

The Jaya algorithm was developed by R. Rao in 2015 [23] 

as a variant of the teaching-learning-based optimization 

method. 

In Jaya algorithm, each search agent is called a particle 

𝑥𝑗,𝑖. Each particle moves toward the best solution 𝑥𝑗,best and 
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away from the worst solution 𝑥𝑗,worst in the search space. The 

position of the particle 𝑥 ′
𝑗,𝑖 is updated as follows, 

𝑥 ′
𝑗,𝑖 = 𝑥𝑗,𝑖 + 𝑟1,𝑗 × (𝑥𝑗,best − |𝑥𝑗,𝑖|) − 𝑟2,𝑗 × (𝑥𝑗,worst − |𝑥𝑗,𝑖|) (4) 

Where 𝑟1,𝑗 and 𝑟2,𝑗 are two uniform functions which generate 

a random number within [0,1]. |𝑥𝑗,𝑖| is the absolute value of 

the particle 𝑥𝑗,𝑖.  

2.2.3 Differential evolution-based neural networks 

Differential Evolution (DE), proposed by R. Storn and K. 

Price in 1995 [24]. The DE process consists of four main steps 

as follows: 

Step 1. Initialize a population of candidate solutions. A 

considered individual candidate is expressed as 

𝑿𝑖,𝐺 = [𝑥1,𝑖,𝐺 , 𝑥2,𝑖,𝐺 , . . . , 𝑥𝐷,𝑖,𝐺] (5) 

Where G is the number of generations and j = 1, 2, …, D., i = 

1, 2, …, NP. NP is the size of the population and D is the size 

of the dimension variables of the optimization problem. 

Step 2. Mutation. For each candidate solution, generate a 

donor solution by combining it with two other candidates in 

vectormutantApopulation.the 𝑽𝑖,𝐺 =

[𝑣1,𝑖,𝐺 , 𝑣2,𝑖,𝐺 , . . . , 𝑣𝐷,𝑖,𝐺]   is generated as Table 3. Where 

𝑟1
𝑖 , 𝑟2

𝑖 , 𝑟3
𝑖  and 𝑟1

4  are integers randomly selected from [1;NP] 

such that 𝑟1
𝑖 ≠ 𝑟2

𝑖 ≠ 𝑟3
𝑖 ≠ 𝑟4

𝑖 ≠ 𝑖. The mutant coefficient F is 

selected from [0,1]. 

Table 3: Mutation scheme 

DE/best/1 𝑣𝑖,𝐺 = 𝑥𝑏𝑒𝑠𝑡,𝐺 + 𝐹 (𝑥𝑟2
𝑖 ,𝐺 − 𝑥𝑟3

𝑖 ,𝐺) 

DE/rand/1 𝑣𝑖,𝐺 = 𝑥𝑟1
𝑖 ,𝐺 + 𝐹 (𝑥𝑟2

𝑖 ,𝐺 − 𝑥𝑟3
𝑖 ,𝐺) 

DE/best/2 𝑣𝑖,𝐺 = 𝑥𝑏𝑒𝑠𝑡,𝐺 + 𝐹 (𝑥𝑟1
𝑖 ,𝐺 + 𝑥𝑟2

𝑖 ,𝐺 − 𝑥𝑟3
𝑖 ,𝐺 − 𝑥𝑟4

𝑖 ,𝐺) 

DE/rand/2 𝑣𝑖,𝐺 = 𝑥𝑟5
𝑖 ,𝐺 + 𝐹 (𝑥𝑟1

𝑖 ,𝐺 + 𝑥𝑟2
𝑖 ,𝐺 − 𝑥𝑟3

𝑖 ,𝐺 − 𝑥𝑟4
𝑖 ,𝐺) 

Step 3. Crossover. To improve the variety of the 

population, the trial vector of binôme crossover 𝑼𝑖,𝐺 =

[𝑢1,𝑖,𝐺 , 𝑢2,𝑖,𝐺 , . . . , 𝑢𝐷,𝑖,𝐺] can be defined as, 

𝑢𝑗,𝑖,𝐺 = {
𝑣𝑗,𝑖,𝐺         𝑖𝑓(𝑟𝑑𝑗,𝑖[0,1] ≤ 𝐶𝑅)

𝑥𝑗,𝑖,𝐺        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6) 

where 𝑟𝑑𝑗,𝑖[0,1] is a uniform generated in the range [0,1] and 

the crossover coefficient CR is selected from [0,1]. 

Step 4. Selection. To compare the trial solution 𝑼𝑖,𝐺 to the 

original solution 𝑿𝑖,𝐺  and replace 𝑿𝑖,𝐺  with the 𝑼𝑖,𝐺  if their 

fitness is better. 

2.2.4 Cooperative coevolutionary algorithms 

In this section, a cooperative coevolutionary algorithm 

(CoDEJA) is proposed by combining a modified differential 

evolution (MDE) and the Jaya algorithm. The population is 

divided into two subpopulations, each responsible for 

optimizing the weights and biases of the neural network. The 

flowchart of the CoDEJA-based neural network optimization 

is shown in Fig. 3. 

In each subpopulation, the global solution is found by 

using the MDE algorithm and Jaya algorithm. The first 

subpopulation utilizes a modified differential evolution 

algorithm with self-adaptive mutation operators, including 

"rand/1" and "best/1". This allows for a balance between 

exploration and exploitation, enhancing the chances of 

finding the global solution. The detailed steps of the MDE 

algorithm are outlined in Algorithm 1. The second 

subpopulation leverages the Jaya algorithm to search for the 

global solution. The details of the Jaya algorithm are 

presented in Algorithm 2. 

 

 

Figure 3: Flow chart of CoDEJA optimized neural networks 

After that, following independent optimization within 

each subpopulation, information exchange and updates are 

facilitated: The "best" individuals from each subpopulation 

are exchanged, allowing them to contribute to the search 

process in the other subpopulation. Based on the exchanged 

information, the selection of "best" individuals within each 

Algorithm 1: The pseudo-code of  MDE 

A. Input: NP/2, CR = 0.9, F = 0.5;   the number weights of hidden and 

output layers D. The initial population 𝜽𝑖,𝐺 =

[𝜃1,𝑖,𝐺 , 𝜃2,𝑖,𝐺 , . . . , 𝜃𝐷,𝑖,𝐺].   
B. Output: The best solution  

1: Evaluate the fitness for each individual in the subpopulation. 

2:  for i = 1 to NP/2 do 

3:  
4:  

 
jrand = randint(1, D) 
for j = 1 to D do 

5:    if rand[0,1] < CR or j = jrand then 

6:     if  rand > 0.5 then  % using “rand/1” 

7:      
Select randomly r1 ≠ r2 ≠ r3≠ i, i{1,2,…,NP} 

, 1, 2, 3,( )i j r j r j r ju x F x x  

8:     else  

9:      

Select randomly r1 ≠ r2 ≠best ≠ i, 

i{1,2,…,NP} 

, , 1, 2,( )i j best j r j r ju x F x x  

10:     end if 

11:    else 

12:     , ,i j i ju x  

13:    end if 

14:   end for 

15:   if 𝑓(𝒖𝑖) ≤ 𝑓(𝒙𝑖) 

16:    
i ix u  

17:   else 

18:    
i ix x  

19:   end if 

20:  end for 
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subpopulation is updated for the next generation. This 

cooperative approach aims to leverage the strengths of both 

the MDE and Jaya algorithms, while promoting knowledge 

transfer between subpopulations. The details of the CoDEJA 

algorithm are presented in Algorithm 3. 

 

2.3 Benchmark dynamic systems identification 

2.3.1 Expeirmental setup 

In this section, the benchmark mechanical dynamic 

systems used to test the performance of the proposed 

CoDEJA-NN are presented. The characteristics of the 

benchmark dynamic system are summarized in Table 4. 

Case study 1. MR Damper. The magneto-rheological 

(MR) damper dataset in Fig.4 was created by Dr. Akira Sano 

et al. [25] which concluded the velocity input v (cm/s) of the 

damper and the output f (N) of damping force measurements.  

Case study 2. Piezoelectric actuator. The piezoelectric 

actuators dataset is provided by Prof. Micky Rakotondrabe 

which is a library in MATLAB with the name 

“idPiezoElectricData.mat”. The dataset of Piezoelectric 

actuators is described in Fig.5. In which, the input v [Volt] is 

the voltage and the output d [μ.m] is the displacement of the 

actuator. 

Remark 1. All algorithms are tested by using MATLAB 

2023b on an Intel(R) Core (TM) i5-8400 CPU with a speed of 

2.80GHz and 12 GB of RAM. The control parameters are 

chosen using the trial-and-error method, as shown in Table 4. 

Remark 2. The dataset of benchmark dynamic systems is 

normalized by using the Min-Max technique to the range [-

1,1] before the system identification process. 

 

𝑧𝑖 = 2
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
− 1 (8) 

 

In which, z, x, 𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 are normalized, current, minimum, 

and the maximum values in the dataset, respectively. 

Table 4: The characteristics of benchmark dynamic system 

Dataset Samples Range of input Range of output 

MR Damper 3,499 
[-15.4970, 
14.7925] 

[-79.2771, 
85.8684] 

Piezoelectric 

actuator 
10,000 

[-71.5378, 

71.1544] 

[-71.8729, 

71.7462] 

Table 5: Parameters used in identification 

Algorithm Coefficients Note 

General 

Number of runs 

Population dimension NP 

Amount of generations 
Range of weight values 

10 times 

2D 

10.000 
[-1,1] 

DE [24] 
Mutant factor, F 

Crossover factor, CR 

0.5 

0.9 

JAYA [23] No control parameters - 

 

Figure 4: The dataset of MR Damper for identification 

 

Figure 5: The dataset of Piezo for identification 

2.3.2 Results and disscussion 

Case study 1. MR Damper system identification 

The input to the neural network is denoted by, 𝑿 =
[𝑓(𝑘 − 1), 𝑓(𝑘 − 2), 𝑣(𝑘 − 1), 𝑣(𝑘 − 2), 𝑏𝑖𝑎𝑠]𝑇  and the 

output is denoted by 𝒀 = 𝑓(𝑘). The total number of weights 

in the hidden and output layers is 43. The dataset shown in 

Fig. 4 is normalized to the range [-1, 1] before the system 

identification process.  

Algorithm 2: The pseudo-code of  JAYA 

A. Input: NP/2,  the number weights of hidden and output layers D. 

The initial population 𝜽𝑖,𝐺 = [𝜃1,𝑖,𝐺 , 𝜃2,𝑖,𝐺 , . . . , 𝜃𝐷,𝑖,𝐺].   
B. Output: The best solution  

1: Evaluate the fitness in the subpopulation to find the best and 
worst solution. 

2:  for i = 1 to NP/2 do 

3:  

4:  
 

jrand = randint(1, D) 

for j = 1 to D do 

5:    
𝑢′

𝑗,𝑖 = 𝑥𝑗,𝑖 + 𝑟1,𝑗 × (𝑥𝑗,best − |𝑥𝑗,𝑖|) − 𝑟2,𝑗

× (𝑥𝑗,worst − |𝑥𝑗,𝑖|) 

6:   end for 

7:   if 𝑓(𝒖𝑖) ≤ 𝑓(𝒙𝑖) 

8:    
i ix u  

9:   else 

10:    
i ix x  

11:   end if 

12:  end for 

Algorithm 3: The pseudo-code of  CoDEJA 

A. Input: NP,  the number weights of hidden and output layers D. The 

initial population 𝜽𝑖,𝐺 = [𝜃1,𝑖,𝐺 , 𝜃2,𝑖,𝐺 , . . . , 𝜃𝐷,𝑖,𝐺].   
B. Output: The global solution  

1: Divide the population into two subpopulations 
2: while(G is not reached) do 

3:  Call Algorithm 1. 

4:  Call Algorithm 2. 

5:  Exchanged the “best" individuals from each subpopulation 

6:  
Selection of the "best" individuals updated for the next genera-
tion 

7: end while 
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Figure 6: Criterion of fitness in the training process of MR Damper system 

The identification results of MR Damper are described as 

follows. Fig.7 shows the convergence speed of DE, JAYA, 

and CoDEJA algorithms in the training process, while Fig.7 

shows the performance identification of those algorithms in 

the validating process. Table 6 tabulates the criteria for 

performance in the training and validating process. 

 

Figure 7: The performance identification in validating MR Damper system 

Table 6: Performance identification of MR Damper system 

Method 

MSE 

Training Validation 

Best Worst 
Averag

e 
Best Worst 

Averag

e 

CoDEJ

A 
4.657

7 
5.2429 4.9169 

3.840

8 

4.368

9 
4.0872 

Jaya 
7.695

0 

11.724

6 
9.4821 

5.269

2 

6.158

2 
5.7681 

DE 
5.910

6 

18.950

1 
12.0524 

4.721

6 

7.888

1 
6.3552 

 

From Fig.6 and Fig.7, it can be observed that the 

convergence speed of CoDEJA is better than DE and JAYA. 

From Table 6, the MSE of CODEJA archives 4.9169 and 

4.0872 in the training and validating process, while DE 

achieves 12.0524 and 6.3552, JAYA achieves 9.4821 and 

5.7681. 

Case study 2. Piezoelectric actuator 

The neural model consists of six inputs, seven hidden neurons, 

and one output. The input to the neural network is denoted by, 

𝑿 = [𝑑(𝑘 − 1), 𝑑(𝑘 − 2), 𝑑(𝑘 − 3), 𝑣(𝑘 − 1), 𝑣(𝑘 −
2), 𝑣(𝑘 − 3), 𝑏𝑖𝑎𝑠]𝑇 and the output is denoted by 𝒀 = 𝑑(𝑘). 

The total number of weights in the hidden and output layers 

is 57. The dataset shown in Figure 6 is normalized to the range 

[-1, 1] before identification.  

 

Figure 8: Criterion of fitness in training process of Piezo system 

 

Figure 9: The performance identification in validating of Piezo system 

 

Table 7: Performance identification of the Piezo system 

Method 

MSE 

Training Validation 

Best Worst 
Averag

e 
Best Worst 

Averag

e 

CoDEJ

A 

0.239

1 
0.2758 0.2533 

0.260

0 

0.148

3 
0.2742 

Jaya 
0.587

5 

12.841

1 
3.396 

0.602

0 

2.109

0 
1.5216 

DE 
1.346

4 
24.018

3 
15.9244 

0.919
2 

5.305
0 

6.7693 

 

The identification results of the Piezo system are 

described as follows. Fig.8 shows the convergence speed of 

DE, JAYA and CoDEJA algorithms in the training process, 

while Fig.9 shows the performance identification of those 

algorithms in the validating process. Table 7 tabulates the 

criteria’s performance (i.e. minimum, maximum, and 

average) in the training and validating process. 

From Fig.8, it can be seen that the convergence speed of 

CoDEJA yields a stronger performance than DE and JAYA 

algorithms. After 2000 generations, the CoDEJA converges 

to near zero. From Table 7, the MSE in the training and 

validating process of CoDEJA is 0.2533 and 0.2742, while 

DE yields 15.9244 and 6.7693, JAYA yields 3.396 and 

1.5216.  
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In summary, through testing two different nonlinear 

benchmark systems, the CoDEJA algorithm has significantly 

improved quality compared to the DE and JAYA algorithms. 

The CoDEJA algorithm has combined the strengths of the DE 

and JAYA algorithms to balance the two aspects of local 

exploitation and global search to improve quality. 

2.3.3  Results compared with other methods 

In this section, the CoDEJA-optimized neural is compared 

to other studies that use the same datasets. Table 8 shows the 

results of CoDEJA-optimized neural with Cooperative 

RBFNN-DE-BHSA (binary harmony search algorithm) [26] 

in terms of best or minimum, worst or maximum, mean and 

standard deviation (Std.dev). 
Table 8: Performance comparison of MR damper 

 Model 
Regression input of 

neural 
Best Worst Mean Std.dev 

CoDEJA-
NN 

𝑓(𝑘 − 1), 𝑓(𝑘 − 2) 

𝑣(𝑘 − 1), 𝑣(𝑘 − 2) 
3.840 4.369 4.087 0.201 

RBFNN- 

DE-
BHSA 

𝑓(𝑘 − 1), 𝑓(𝑘 − 2) 

𝑣(𝑘 − 1), 𝑣(𝑘 − 2) 

𝑣(𝑘 − 6), 𝑣(𝑘 − 7) 

10.51 11.81 11.29 0.327 

 

It can be seen that the identification performance of the 

CoDEJA-NN is better than the RBFNN- DE-BHSA model in 

terms of Mean and Std. dev criteria. The error of the CoDEJA-

optimized Neural model is 4.0872 ± 0.2011 , while the 

RBFNN- DE-BHSA model is 11.2856 ± 0.3273. 

2.4 Modeling and identification of PMA system 

First, training data is collected using the experimental 

PMA system to gather data on the applied voltage and the 

joint angle, as shown in Fig. 10. Here, 𝑢1(𝑘)
 
represents the 

applied voltage inputs, and 𝜃1(𝑘) represents the joint angle 

output. This input-output data is used for both estimation (a) 

and validation (b) of the CoDEJA-optimized neural model. 

Second. To Select model structure is as the input to the 

neural network defined by 𝑿 = [𝜃1(𝑘 − 1), 𝜃1(𝑘 −
2), 𝜃1(𝑘 − 3), 𝑢1(𝑘 − 1), 𝑢1(𝑘 − 2), 𝑢1(𝑘 − 3), 𝑏𝑖𝑎𝑠]𝑇  and 

the output is denoted by 𝒀 = 𝜃1(𝑘). The total weight of neural 

model in the hidden layers is 10. 

Finally, the estimation and validation process are 

conducted to identify the PMA system. Figure 11 shows the 

performance identification of the PMA system on validating 

process. Figure 12 shows the histogram of identification 

errors. Figure 13 depicts the performance identification curve 

of the PMA system, where the horizontal axis is the voltage 

supplied to the PMA and the vertical axis is the rotation angle 

of the PMA. 

The identification results show that the dynamic model of 

the PMA system performs very well in capturing the system’s 

behavior. As shown in Figure 12, the model’s prediction 

errors are mostly small and centered around −2. 10−3, with a 

distribution that is roughly symmetric and shaped like a bell. 

This indicates that the model has high accuracy, with no large 

errors. Although the slight shift to the left suggests a small 

tendency to underestimate, the narrow spread and absence of 

large outliers confirm the model's reliability. 

 
Figure 10: Collection of data for estimating and validating processes 

 
Figure 11: Performance identification of PMA system 

 
Figure 12: Histogram of identification errors 

 
Figure 13: The performacne identification curve of PMA system 

3. Conclusion  

This paper introduces CoDEJA, a cooperative 

coevolutionary algorithm designed to simultaneously 

optimize the weights and biases of neural networks, 

enhancing both their search capabilities and convergence 
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speed. CoDEJA utilizes modified differential evolution 

(MDE) and JAYA algorithms to subdivide the population into 

two subpopulations, each responsible for optimizing a 

specific set of neural network parameters. To evaluate 

CoDEJA's performance, two nonlineear dynamic systems 

were used for testing. CoDEJA was compared against the 

classical DE and JAYA algorithms, as well as other existing 

approaches. The results demonstrate that CoDEJA-optimized 

neural networks achieve high accuracy and robustness. In 

addition, the proposed method has successfully applied 

modeling and identification of the PMA system. 
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