

Received: 29 April 2025; Revised: 07 July 2025; Accepted: 15 July 2025.

Optimizing neural networks for pneumatic muscle actuator system identification:

a cooperative coevolutionary approach

Nguyen Ngoc Son1*, Hoang Duc Quy1, Tran Minh Chinh1, Luu The Vinh1

1Faculty of Electronics Technology, Industrial University of Ho Chi Minh City, Viet Nam,

*Corresponding author E-mail: nguyenngocson@iuh.edu.vn
DOI: https://doi.org/10.64032/mca.v29i3.334

Abstract

This paper presents a cooperative coevolutionary optimization algorithm to overcome issues in gradient descent-based neural network, such

as getting stuck in local minimum and slow convergence. The proposed method combines JAYA and a modified differential evolution (DE)

techniques to optimize neural network weights. It works by splitting the population into two subpopulations, each focusing on optimizing

different aspects of the network weights. The method's effectiveness is tested on two benchmark nonlinear dynamical systems and compared

with existing methods. Results show that the neural network optimized by this approach achieves high accuracy and robustness. Finally, the

practical applicability of this method is demonstrated by modeling the pneumatic muscle actuator (PMA) system using experimental data,

where the PMA system is made up of Festo's MAS-10 N220 pneumatic artificial muscles and controlled with a DAQ NI 6221 card.

Keywords: Coevolutionary algorithm; Optimized Neural network; Nonlinear system identification; Jaya algorithm;

Differential evolution.

Abbreviations

DE Differential evolution

PMA
MSE

CoDEJA

CEAs

pneumatic muscle actuator

Mean square error

Coevolutionary based DE and JAYA

Coevolutionary algorithms

1. Introduction

Identifying nonlinear black-box models of dynamical

systems involves finding system characteristics based on

measured input and output signals by minimizing the error

norm between measured data and model output. Recent

research has explored various approaches, including

feedforward neural networks [1], LSTM neural networks [2],

neuro-fuzzy systems [3], and other hybrid intelligent methods

[4]. Among these, optimizing weights and biases remains a

critical task in neural networks. Over the past decade,

gradient-based methods have been widely studied but still

face limitations such as local minima and slow convergence,

which degrade system identification performance.

To address these issues, evolutionary algorithms (EAs)

have been explored for optimizing neural network weights

and biases. For instance, Xiong et al. [5] applied differential

evolution to optimize the number of hidden neurons and the

regularization factor of hierarchical extreme learning

machines for fault section diagnosis in large-scale power

systems. Liu et al. [6] used differential evolution to train

neural network-based control parameters for power electronic

circuits. Nguyen et al. [7] proposed a modified differential

evolution algorithm for optimizing neural networks in time

series forecasting. Min et al. [8] introduced a neural network-

optimized genetic algorithm for energy management

strategies in hybrid electric vehicles under start-stop

conditions. Nguyen et al. [9] applied the Jaya algorithm to

optimize neural network weights for uncertain nonlinear

system identification. Mao et al. [10] developed a

biogeography-based optimization algorithm for multilayer

perceptron networks in nonlinear system identification.

However, EAs often struggle to find global solutions for

large-scale problems within limited computational time.

Coevolutionary algorithms (CEAs) have been developed

to address complex problems through a divide-and-conquer

approach. Unlike EAs, which evolve a single population with

one leading individual, CEAs evolve multiple populations

simultaneously, each with multiple leading individuals. This

enhances the balance between exploration and exploitation

and helps prevent premature convergence.

For example, a co-evolutionary bird optimization

algorithm combined with an online policy gradient method

was introduced to solve continuous real-parameter

optimization problems [11]. A knowledge-driven

coevolutionary algorithm combined differential evolution

(DE) and estimation of distribution algorithm through a cross-

regional interactive learning mechanism to improve

performance [12]. A modified competitive swarm optimizer

(CSO) using a three-phase coevolutionary strategy was also

proposed to enhance CSO performance [13].

Recently, CEAs have been applying to optimize neural

network weights. Triumala et al. [14] introduced a multi-

population cooperative neuro-evolution approach, while

Gong et al. [15] combined cooperative coevolution with

backpropagation. Wei et al. [16] developed a coevolutionary

particle swarm optimization for manipulator control, and

Liang et al. [17] proposed a cooperative coevolutionary JADE

to evolve both topology and weights. Ayala et al. [18] applied

differential evolution and harmony search for RBFNN

optimization, and Xue et al. [19] combined differential

evolution with Adam-based gradient descent for feedforward

networks.

Jaya and differential evolution algorithms have been

widely applied in areas such as scheduling [20], wireless

sensor networks [21], and parameter estimation [22]. The Jaya

Journal of Measurement, Control and Automation, Vol 29 (3) (2025) 16-23, ISSN 3030-4555 16

mailto:nguyenngocson@iuh.edu.vn
https://doi.org/10.64032/mca.v29i3.334

algorithm offers advantages such as simplicity, efficiency,

and no control parameters, making it suitable for complex

problems. Differential evolution is also favored for its fast

convergence and the need for only three control parameters.

Based on the above analysis, this paper presents a

cooperative coevolutionary algorithm to optimize neural

networks (named CoDEJA-NN), aiming to overcome local

minimum and slow convergence issues in gradient-based

methods. The proposed algorithm combines differential

evolution and the Jaya algorithm by dividing the initial

population into two subpopulations, each responsible for

optimizing different aspects of the neural network. The

method is evaluated through three nonlinear dynamical

system identification tasks and compared against existing

algorithms to verify its effectiveness.

The remainder of the paper is organized as follows.

Section 2.1 introduces the PMA system configuration.

Section 2.2 describes the proposed CoDEJA-NN model for

system identification. Section 2.3 presents performance

evaluation and discussion. Section 2.4 applies the proposed

method to PMA system modeling. Section 3 concludes the

paper.

2. Main body

2.1 Pneumatic muscle actuator (PMA) setup

A block diagram of the experimental pneumatic muscle

actuator (PMA) architecture is shown in Fig.1, and the photo

of the PMA system as Fig.2. The parameters of the PMA

system are described in Table 1 and Table 2.

Proportional

Valve

Rotary

encoder

Matlab/Simulink

NI-PCI

6221

Air

Compressor

1u

1p

PAM
1

Link 1Pulley

1l

Spring

Figure 1: Diagram of the experimental PMA system

Figure 2: Diagram of the experimental PMA system

The PMA system is a 1-DOF motion platform actuated by

PMAs, equipped with a coil spring for passive force

compensation and a rotary encoder for angle measurement.

Airflow is regulated by proportional valves (EV2500-008),

and a National Instruments PCI 6221 card handles real-time

data acquisition and control. Control algorithms are

implemented in Matlab using the Real-Time Windows Target

Toolbox with a sampling time of Ts = 0.01 s.

Table 1: Mechanical parameters of PMA system

Parameter Notation Value Unit

Length link 1 l1 15 cm

Distance between two rotary joints d 20 cm

Diameter of pulley  3 cm

Stiffness of spring k 500 N/m

Table 2: Experimental device parameters of PMA system

No Devices Parameters

1
PMA: Festo

MAS-10 N220

- Nominal length: 22 cm
- Internal diameter: 10 mm

- Operating pressure: 0-8 bar

2
Encoder:
Autonics

E40S6-3600

- Rotary encoder.
- Resolution: 3600 pulses per revolution.

- Power supply: 24 V ± 10%

3
DAQ card: NI

PCI 6221

- Two 16-bit analog outputs (833 KS/s)
- 24 digital I/O.

- 16 Analog Inputs, 16-Bit, 250 KS/s

4
Proportional

valse EV2500-

008

- Power: DC 24 V (± 10% tolerance)

- Control Pressure Range: 0 to 0.49 Mpa.

- Input Signal: 0-10 V DC
- Resolution: 0.5% of Full Scale (F.S.)

2.2 The proposed cooperative coevolutionary

algorithms-based neural networks

2.2.1 Neural networks training problem

The structure of neural networks includes n inputs, q

which,Inoutputs.mandneurons,hidden 𝑿 =
[𝑥𝑏𝑖𝑎𝑠, 𝑥1, … , 𝑥𝑛]𝑇 and 𝒀 = [𝑦1, . . , 𝑦𝑚]𝑇 are the input and

respectively.networks,neuralofoutput 𝑽 =
[𝑣10 𝑣11 … 𝑣1𝑛 , 𝑣𝑞0, … 𝑣𝑞𝑛] denotes the weights of the

input.biasandlayerinput 𝑾 =
[𝑤10 𝑤11 … 𝑤1𝑞 , 𝑤𝑚0, … 𝑤𝑚𝑞] denotes the weights of

hidden layer and bias. f(.) and F(.) are the active functions of

the hidden and output layers.

The output of neural networks is defined as follows,

𝑦̂𝑙(𝑘, 𝜃) = 𝐹𝑙(∑ 𝑤1𝑖𝑓𝑖(∑ 𝑣𝑖𝑗𝑥𝑗(𝑘) + 𝑣𝑖0
𝑛
𝑗=1) + 𝑤10

𝑞
𝑖=1) (1)

Where, 𝑙 ∈ [1, 𝑚] . The weights are denoted as 𝜽 =
[𝜃1, 𝜃2, … , 𝜃𝐷] which D is the number weights of hidden and

output layers. The dimension of D is calculated as,

𝐷 = 𝑞(𝑛 + 1) + 𝑚(𝑞 + 1) (2)

To optimize the weights and bias of neural networks 𝜽 by

minimizing the criteria mean square errors (MSE) which is

defined as,

𝐽(𝜃, 𝑍𝑁) =
1

2𝑁
∑ ∑ [𝑦𝑙(𝑘) − 𝑦̂𝑙(𝑘|𝜃)]𝑇[𝑦𝑙(𝑘) − 𝑦̂𝑙(𝑘|𝜃)]𝑚

𝑙=1
𝑁
𝑘=1 (3)

Where, ZN is the training data set which is defined by 𝑍𝑁 =
{[𝑿(𝑘), 𝒀(𝑘)]|𝑘 = 1, . . . , 𝑁}. N is the number of sample data.

2.2.2 Jaya algorithm-based neural network

The Jaya algorithm was developed by R. Rao in 2015 [23]

as a variant of the teaching-learning-based optimization

method.

In Jaya algorithm, each search agent is called a particle

𝑥𝑗,𝑖. Each particle moves toward the best solution 𝑥𝑗,best and

Journal of Measurement, Control and Automation 17

away from the worst solution 𝑥𝑗,worst in the search space. The

position of the particle 𝑥 ′
𝑗,𝑖 is updated as follows,

𝑥 ′
𝑗,𝑖 = 𝑥𝑗,𝑖 + 𝑟1,𝑗 × (𝑥𝑗,best − |𝑥𝑗,𝑖|) − 𝑟2,𝑗 × (𝑥𝑗,worst − |𝑥𝑗,𝑖|) (4)

Where 𝑟1,𝑗 and 𝑟2,𝑗 are two uniform functions which generate

a random number within [0,1]. |𝑥𝑗,𝑖| is the absolute value of

the particle 𝑥𝑗,𝑖.

2.2.3 Differential evolution-based neural networks

Differential Evolution (DE), proposed by R. Storn and K.

Price in 1995 [24]. The DE process consists of four main steps

as follows:

Step 1. Initialize a population of candidate solutions. A

considered individual candidate is expressed as

𝑿𝑖,𝐺 = [𝑥1,𝑖,𝐺 , 𝑥2,𝑖,𝐺 , . . . , 𝑥𝐷,𝑖,𝐺] (5)

Where G is the number of generations and j = 1, 2, …, D., i =

1, 2, …, NP. NP is the size of the population and D is the size

of the dimension variables of the optimization problem.

Step 2. Mutation. For each candidate solution, generate a

donor solution by combining it with two other candidates in

vectormutantApopulation.the 𝑽𝑖,𝐺 =

[𝑣1,𝑖,𝐺 , 𝑣2,𝑖,𝐺 , . . . , 𝑣𝐷,𝑖,𝐺] is generated as Table 3. Where

𝑟1
𝑖 , 𝑟2

𝑖 , 𝑟3
𝑖 and 𝑟1

4 are integers randomly selected from [1;NP]

such that 𝑟1
𝑖 ≠ 𝑟2

𝑖 ≠ 𝑟3
𝑖 ≠ 𝑟4

𝑖 ≠ 𝑖. The mutant coefficient F is

selected from [0,1].

Table 3: Mutation scheme

DE/best/1 𝑣𝑖,𝐺 = 𝑥𝑏𝑒𝑠𝑡,𝐺 + 𝐹 (𝑥𝑟2
𝑖 ,𝐺 − 𝑥𝑟3

𝑖 ,𝐺)

DE/rand/1 𝑣𝑖,𝐺 = 𝑥𝑟1
𝑖 ,𝐺 + 𝐹 (𝑥𝑟2

𝑖 ,𝐺 − 𝑥𝑟3
𝑖 ,𝐺)

DE/best/2 𝑣𝑖,𝐺 = 𝑥𝑏𝑒𝑠𝑡,𝐺 + 𝐹 (𝑥𝑟1
𝑖 ,𝐺 + 𝑥𝑟2

𝑖 ,𝐺 − 𝑥𝑟3
𝑖 ,𝐺 − 𝑥𝑟4

𝑖 ,𝐺)

DE/rand/2 𝑣𝑖,𝐺 = 𝑥𝑟5
𝑖 ,𝐺 + 𝐹 (𝑥𝑟1

𝑖 ,𝐺 + 𝑥𝑟2
𝑖 ,𝐺 − 𝑥𝑟3

𝑖 ,𝐺 − 𝑥𝑟4
𝑖 ,𝐺)

Step 3. Crossover. To improve the variety of the

population, the trial vector of binôme crossover 𝑼𝑖,𝐺 =

[𝑢1,𝑖,𝐺 , 𝑢2,𝑖,𝐺 , . . . , 𝑢𝐷,𝑖,𝐺] can be defined as,

𝑢𝑗,𝑖,𝐺 = {
𝑣𝑗,𝑖,𝐺 𝑖𝑓(𝑟𝑑𝑗,𝑖[0,1] ≤ 𝐶𝑅)

𝑥𝑗,𝑖,𝐺 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6)

where 𝑟𝑑𝑗,𝑖[0,1] is a uniform generated in the range [0,1] and

the crossover coefficient CR is selected from [0,1].

Step 4. Selection. To compare the trial solution 𝑼𝑖,𝐺 to the

original solution 𝑿𝑖,𝐺 and replace 𝑿𝑖,𝐺 with the 𝑼𝑖,𝐺 if their

fitness is better.

2.2.4 Cooperative coevolutionary algorithms

In this section, a cooperative coevolutionary algorithm

(CoDEJA) is proposed by combining a modified differential

evolution (MDE) and the Jaya algorithm. The population is

divided into two subpopulations, each responsible for

optimizing the weights and biases of the neural network. The

flowchart of the CoDEJA-based neural network optimization

is shown in Fig. 3.

In each subpopulation, the global solution is found by

using the MDE algorithm and Jaya algorithm. The first

subpopulation utilizes a modified differential evolution

algorithm with self-adaptive mutation operators, including

"rand/1" and "best/1". This allows for a balance between

exploration and exploitation, enhancing the chances of

finding the global solution. The detailed steps of the MDE

algorithm are outlined in Algorithm 1. The second

subpopulation leverages the Jaya algorithm to search for the

global solution. The details of the Jaya algorithm are

presented in Algorithm 2.

Figure 3: Flow chart of CoDEJA optimized neural networks

After that, following independent optimization within

each subpopulation, information exchange and updates are

facilitated: The "best" individuals from each subpopulation

are exchanged, allowing them to contribute to the search

process in the other subpopulation. Based on the exchanged

information, the selection of "best" individuals within each

Algorithm 1: The pseudo-code of MDE

A. Input: NP/2, CR = 0.9, F = 0.5; the number weights of hidden and

output layers D. The initial population 𝜽𝑖,𝐺 =

[𝜃1,𝑖,𝐺 , 𝜃2,𝑖,𝐺 , . . . , 𝜃𝐷,𝑖,𝐺].
B. Output: The best solution

1: Evaluate the fitness for each individual in the subpopulation.

2: for i = 1 to NP/2 do

3:
4:

jrand = randint(1, D)
for j = 1 to D do

5: if rand[0,1] < CR or j = jrand then

6: if rand > 0.5 then % using “rand/1”

7:
Select randomly r1 ≠ r2 ≠ r3≠ i, i{1,2,…,NP}

, 1, 2, 3,()i j r j r j r ju x F x x

8: else

9:

Select randomly r1 ≠ r2 ≠best ≠ i,

i{1,2,…,NP}

, , 1, 2,()i j best j r j r ju x F x x

10: end if

11: else

12: , ,i j i ju x

13: end if

14: end for

15: if 𝑓(𝒖𝑖) ≤ 𝑓(𝒙𝑖)

16:
i ix u

17: else

18:
i ix x

19: end if

20: end for

18 Journal of Measurement, Control, and Automation

subpopulation is updated for the next generation. This

cooperative approach aims to leverage the strengths of both

the MDE and Jaya algorithms, while promoting knowledge

transfer between subpopulations. The details of the CoDEJA

algorithm are presented in Algorithm 3.

2.3 Benchmark dynamic systems identification

2.3.1 Expeirmental setup

In this section, the benchmark mechanical dynamic

systems used to test the performance of the proposed

CoDEJA-NN are presented. The characteristics of the

benchmark dynamic system are summarized in Table 4.

Case study 1. MR Damper. The magneto-rheological

(MR) damper dataset in Fig.4 was created by Dr. Akira Sano

et al. [25] which concluded the velocity input v (cm/s) of the

damper and the output f (N) of damping force measurements.

Case study 2. Piezoelectric actuator. The piezoelectric

actuators dataset is provided by Prof. Micky Rakotondrabe

which is a library in MATLAB with the name

“idPiezoElectricData.mat”. The dataset of Piezoelectric

actuators is described in Fig.5. In which, the input v [Volt] is

the voltage and the output d [μ.m] is the displacement of the

actuator.

Remark 1. All algorithms are tested by using MATLAB

2023b on an Intel(R) Core (TM) i5-8400 CPU with a speed of

2.80GHz and 12 GB of RAM. The control parameters are

chosen using the trial-and-error method, as shown in Table 4.

Remark 2. The dataset of benchmark dynamic systems is

normalized by using the Min-Max technique to the range [-

1,1] before the system identification process.

𝑧𝑖 = 2
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
− 1 (8)

In which, z, x, 𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 are normalized, current, minimum,

and the maximum values in the dataset, respectively.

Table 4: The characteristics of benchmark dynamic system

Dataset Samples Range of input Range of output

MR Damper 3,499
[-15.4970,
14.7925]

[-79.2771,
85.8684]

Piezoelectric

actuator
10,000

[-71.5378,

71.1544]

[-71.8729,

71.7462]

Table 5: Parameters used in identification

Algorithm Coefficients Note

General

Number of runs

Population dimension NP

Amount of generations
Range of weight values

10 times

2D

10.000
[-1,1]

DE [24]
Mutant factor, F

Crossover factor, CR

0.5

0.9

JAYA [23] No control parameters -

Figure 4: The dataset of MR Damper for identification

Figure 5: The dataset of Piezo for identification

2.3.2 Results and disscussion

Case study 1. MR Damper system identification

The input to the neural network is denoted by, 𝑿 =
[𝑓(𝑘 − 1), 𝑓(𝑘 − 2), 𝑣(𝑘 − 1), 𝑣(𝑘 − 2), 𝑏𝑖𝑎𝑠]𝑇 and the

output is denoted by 𝒀 = 𝑓(𝑘). The total number of weights

in the hidden and output layers is 43. The dataset shown in

Fig. 4 is normalized to the range [-1, 1] before the system

identification process.

Algorithm 2: The pseudo-code of JAYA

A. Input: NP/2, the number weights of hidden and output layers D.

The initial population 𝜽𝑖,𝐺 = [𝜃1,𝑖,𝐺 , 𝜃2,𝑖,𝐺 , . . . , 𝜃𝐷,𝑖,𝐺].
B. Output: The best solution

1: Evaluate the fitness in the subpopulation to find the best and
worst solution.

2: for i = 1 to NP/2 do

3:

4:

jrand = randint(1, D)

for j = 1 to D do

5:
𝑢′

𝑗,𝑖 = 𝑥𝑗,𝑖 + 𝑟1,𝑗 × (𝑥𝑗,best − |𝑥𝑗,𝑖|) − 𝑟2,𝑗

× (𝑥𝑗,worst − |𝑥𝑗,𝑖|)

6: end for

7: if 𝑓(𝒖𝑖) ≤ 𝑓(𝒙𝑖)

8:
i ix u

9: else

10:
i ix x

11: end if

12: end for

Algorithm 3: The pseudo-code of CoDEJA

A. Input: NP, the number weights of hidden and output layers D. The

initial population 𝜽𝑖,𝐺 = [𝜃1,𝑖,𝐺 , 𝜃2,𝑖,𝐺 , . . . , 𝜃𝐷,𝑖,𝐺].
B. Output: The global solution

1: Divide the population into two subpopulations
2: while(G is not reached) do

3: Call Algorithm 1.

4: Call Algorithm 2.

5: Exchanged the “best" individuals from each subpopulation

6:
Selection of the "best" individuals updated for the next genera-
tion

7: end while

Journal of Measurement, Control and Automation 19

Figure 6: Criterion of fitness in the training process of MR Damper system

The identification results of MR Damper are described as

follows. Fig.7 shows the convergence speed of DE, JAYA,

and CoDEJA algorithms in the training process, while Fig.7

shows the performance identification of those algorithms in

the validating process. Table 6 tabulates the criteria for

performance in the training and validating process.

Figure 7: The performance identification in validating MR Damper system

Table 6: Performance identification of MR Damper system

Method

MSE

Training Validation

Best Worst
Averag

e
Best Worst

Averag

e

CoDEJ

A
4.657

7
5.2429 4.9169

3.840

8

4.368

9
4.0872

Jaya
7.695

0

11.724

6
9.4821

5.269

2

6.158

2
5.7681

DE
5.910

6

18.950

1
12.0524

4.721

6

7.888

1
6.3552

From Fig.6 and Fig.7, it can be observed that the

convergence speed of CoDEJA is better than DE and JAYA.

From Table 6, the MSE of CODEJA archives 4.9169 and

4.0872 in the training and validating process, while DE

achieves 12.0524 and 6.3552, JAYA achieves 9.4821 and

5.7681.

Case study 2. Piezoelectric actuator

The neural model consists of six inputs, seven hidden neurons,

and one output. The input to the neural network is denoted by,

𝑿 = [𝑑(𝑘 − 1), 𝑑(𝑘 − 2), 𝑑(𝑘 − 3), 𝑣(𝑘 − 1), 𝑣(𝑘 −
2), 𝑣(𝑘 − 3), 𝑏𝑖𝑎𝑠]𝑇 and the output is denoted by 𝒀 = 𝑑(𝑘).

The total number of weights in the hidden and output layers

is 57. The dataset shown in Figure 6 is normalized to the range

[-1, 1] before identification.

Figure 8: Criterion of fitness in training process of Piezo system

Figure 9: The performance identification in validating of Piezo system

Table 7: Performance identification of the Piezo system

Method

MSE

Training Validation

Best Worst
Averag

e
Best Worst

Averag

e

CoDEJ

A

0.239

1
0.2758 0.2533

0.260

0

0.148

3
0.2742

Jaya
0.587

5

12.841

1
3.396

0.602

0

2.109

0
1.5216

DE
1.346

4
24.018

3
15.9244

0.919
2

5.305
0

6.7693

The identification results of the Piezo system are

described as follows. Fig.8 shows the convergence speed of

DE, JAYA and CoDEJA algorithms in the training process,

while Fig.9 shows the performance identification of those

algorithms in the validating process. Table 7 tabulates the

criteria’s performance (i.e. minimum, maximum, and

average) in the training and validating process.

From Fig.8, it can be seen that the convergence speed of

CoDEJA yields a stronger performance than DE and JAYA

algorithms. After 2000 generations, the CoDEJA converges

to near zero. From Table 7, the MSE in the training and

validating process of CoDEJA is 0.2533 and 0.2742, while

DE yields 15.9244 and 6.7693, JAYA yields 3.396 and

1.5216.

20 Journal of Measurement, Control, and Automation

In summary, through testing two different nonlinear

benchmark systems, the CoDEJA algorithm has significantly

improved quality compared to the DE and JAYA algorithms.

The CoDEJA algorithm has combined the strengths of the DE

and JAYA algorithms to balance the two aspects of local

exploitation and global search to improve quality.

2.3.3 Results compared with other methods

In this section, the CoDEJA-optimized neural is compared

to other studies that use the same datasets. Table 8 shows the

results of CoDEJA-optimized neural with Cooperative

RBFNN-DE-BHSA (binary harmony search algorithm) [26]

in terms of best or minimum, worst or maximum, mean and

standard deviation (Std.dev).
Table 8: Performance comparison of MR damper

 Model
Regression input of

neural
Best Worst Mean Std.dev

CoDEJA-
NN

𝑓(𝑘 − 1), 𝑓(𝑘 − 2)

𝑣(𝑘 − 1), 𝑣(𝑘 − 2)
3.840 4.369 4.087 0.201

RBFNN-

DE-
BHSA

𝑓(𝑘 − 1), 𝑓(𝑘 − 2)

𝑣(𝑘 − 1), 𝑣(𝑘 − 2)

𝑣(𝑘 − 6), 𝑣(𝑘 − 7)

10.51 11.81 11.29 0.327

It can be seen that the identification performance of the

CoDEJA-NN is better than the RBFNN- DE-BHSA model in

terms of Mean and Std. dev criteria. The error of the CoDEJA-

optimized Neural model is 4.0872 ± 0.2011 , while the

RBFNN- DE-BHSA model is 11.2856 ± 0.3273.

2.4 Modeling and identification of PMA system

First, training data is collected using the experimental

PMA system to gather data on the applied voltage and the

joint angle, as shown in Fig. 10. Here, 𝑢1(𝑘)

represents the

applied voltage inputs, and 𝜃1(𝑘) represents the joint angle

output. This input-output data is used for both estimation (a)

and validation (b) of the CoDEJA-optimized neural model.

Second. To Select model structure is as the input to the

neural network defined by 𝑿 = [𝜃1(𝑘 − 1), 𝜃1(𝑘 −
2), 𝜃1(𝑘 − 3), 𝑢1(𝑘 − 1), 𝑢1(𝑘 − 2), 𝑢1(𝑘 − 3), 𝑏𝑖𝑎𝑠]𝑇 and

the output is denoted by 𝒀 = 𝜃1(𝑘). The total weight of neural

model in the hidden layers is 10.

Finally, the estimation and validation process are

conducted to identify the PMA system. Figure 11 shows the

performance identification of the PMA system on validating

process. Figure 12 shows the histogram of identification

errors. Figure 13 depicts the performance identification curve

of the PMA system, where the horizontal axis is the voltage

supplied to the PMA and the vertical axis is the rotation angle

of the PMA.

The identification results show that the dynamic model of

the PMA system performs very well in capturing the system’s

behavior. As shown in Figure 12, the model’s prediction

errors are mostly small and centered around −2. 10−3, with a

distribution that is roughly symmetric and shaped like a bell.

This indicates that the model has high accuracy, with no large

errors. Although the slight shift to the left suggests a small

tendency to underestimate, the narrow spread and absence of

large outliers confirm the model's reliability.

Figure 10: Collection of data for estimating and validating processes

Figure 11: Performance identification of PMA system

Figure 12: Histogram of identification errors

Figure 13: The performacne identification curve of PMA system

3. Conclusion

This paper introduces CoDEJA, a cooperative

coevolutionary algorithm designed to simultaneously

optimize the weights and biases of neural networks,

enhancing both their search capabilities and convergence

Journal of Measurement, Control and Automation 21

speed. CoDEJA utilizes modified differential evolution

(MDE) and JAYA algorithms to subdivide the population into

two subpopulations, each responsible for optimizing a

specific set of neural network parameters. To evaluate

CoDEJA's performance, two nonlineear dynamic systems

were used for testing. CoDEJA was compared against the

classical DE and JAYA algorithms, as well as other existing

approaches. The results demonstrate that CoDEJA-optimized

neural networks achieve high accuracy and robustness. In

addition, the proposed method has successfully applied

modeling and identification of the PMA system.

Acknowledgement

This research is funded by Vietnam National Foundation for

Science and Technology Development (NAFOSTED) under

grant number 107.01-2021.92.

References

[1] F. Abdollahi, H. A. Talebi, and R. V Patel, “Stable identification of

nonlinear systems using neural networks: Theory and experiments,”

IEEE/ASME Transactions On Mechatronics, vol. 11, no. 4, pp. 488–495,

2006. https://doi.org/10.1109/TMECH.2006.878527

[2] F. Abdollahi, H. A. Talebi, and R. V Patel, “Stable identification of

nonlinear systems using neural networks: Theory and experiments,”

IEEE/ASME Transactions On Mechatronics, vol. 11, no. 4, pp. 488–495,

2006. https://doi.org/10.1109/TMECH.2006.878527

[3] T.-H. Le, “Feed-Forward and Long Short-Term Neural Network Models

for Power System State Estimation,” Acta Polytech. Hungarica, vol. 21,

no. 6, pp. 223–241, 2024. https://acta.uni-obuda.hu/Le_146.pdf

[4] M. Stefanoni, M. Takács, Á. Odry, and P. Sarcevic, “A Comparison of

Neural Networks and Fuzzy Inference Systems for the Identification of

Magnetic Disturbances in Mobile Robot Localization,” Acta Polytech.

Hungarica, vol. 22, no. 1, 2025. https://acta.uni-

obuda.hu/Stefanoni_Takacs_Odry_Sarcevic_153.pdf

[5] G. Quaranta, W. Lacarbonara, and S. F. Masri, “A review on

computational intelligence for identification of nonlinear dynamical

systems,” Nonlinear Dynamics, vol. 99, no. 2, pp. 1709–1761, 2020.

https://doi.org/10.1007/s11071-019-05430-7

[6] X.-F. Liu, Z.-H. Zhan, and J. Zhang, “Resource-aware distributed

differential evolution for training expensive neural-network-based

controller in power electronic circuit,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 33, no. 11, pp. 6286–6296, 2021.

https://doi.org/10.1109/TNNLS.2021.3075205

[7] N. N. Son and N. Van Cuong, “Neuro-evolutionary for time series

forecasting and its application in hourly energy consumption prediction,”

Neural Computing and Applications, pp. 1–11, 2023.

https://doi.org/10.1007/s00521-023-08942-x

[8] D. Min, Z. Song, H. Chen, T. Wang, and T. Zhang, “Genetic algorithm

optimized neural network based fuel cell hybrid electric vehicle energy

management strategy under start-stop condition,” Applied Energy, vol.

306, p. 118036, 2022. https://doi.org/10.1016/j.apenergy.2021.118036

[9] N. N. Son, T. M. Chinh, and H. P. H. Anh, “Uncertain nonlinear system

identification using Jaya-based adaptive neural network,” Soft

Computing, 2020, doi: 10.1007/s00500-020-05006-3.

[10] W. L. Mao, Suprapto, C. W. Hung, and T. W. Chang, “Nonlinear system

identification using BBO-based multilayer perceptron network method,”

Microsystem Technologies, vol. 27, pp. 1497–1506, 2021.

https://doi.org/10.1007/s00542-019-04415-1

[11] F. Zhao, T. Jiang, T. Xu, and N. Zhu, “A co-evolutionary migrating birds

optimization algorithm based on online learning policy gradient,” Expert

Systems with Applications, vol. 228, p. 120261, 2023.

https://doi.org/10.1016/j.eswa.2023.120261

[12] N. Zhu, F. Zhao, and J. Cao, “A knowledge-driven co-evolutionary

algorithm assisted by cross-regional interactive learning,” Engineering

Applications of Artificial Intelligence, vol. 126, p. 107017, 2023.

https://doi.org/10.1016/j.engappai.2023.107017

[13] C. Huang, X. Zhou, X. Ran, Y. Liu, W. Deng, and W. Deng, “Co-

evolutionary competitive swarm optimizer with three-phase for large-

scale complex optimization problem,” Information Sciences, vol. 619,

pp. 2–18, 2023. https://doi.org/10.1016/j.ins.2022.11.019

[14] S. S. Tirumala, “Evolving deep neural networks using coevolutionary

algorithms with multi-population strategy,” Neural Computing and

Applications, vol. 32, no. 16, pp. 13051–13064, 2020.

https://doi.org/10.1007/s00521-020-04749-2

[15] M. Gong, J. Liu, A. K. Qin, K. Zhao, and K. C. Tan, “Evolving deep

neural networks via cooperative coevolution with backpropagation,”

IEEE Transactions on Neural Networks and Learning Systems, vol. 32,

no. 1, pp. 420–434, 2020. https://doi.org/10.1109/TNNLS.2020.2978857

[16] L. Wei, L. Jin, and X. Luo, “A robust coevolutionary neural-based

optimization algorithm for constrained nonconvex optimization,” IEEE

Transactions on Neural Networks and Learning Systems, 2022.

https://doi.org/10.1109/TNNLS.2022.3220806

[17] J. Liang, G. Chen, B. Qu, C. Yue, K. Yu, and K. Qiao, “Niche-based

cooperative co-evolutionary ensemble neural network for

classification,” Applied Soft Computing, vol. 113, p. 107951, 2021.

https://doi.org/10.1016/j.asoc.2021.107951

[18] H. V. H. Ayala, D. Habineza, M. Rakotondrabe, and L. dos Santos

Coelho, “Nonlinear black-box system identification through

coevolutionary algorithms and radial basis function artificial neural

networks,” Appl Soft Comput, vol. 87, p. 105990, 2020.

https://doi.org/10.1016/j.asoc.2019.105990

[19] Y. Xue, Y. Tong, and F. Neri, “An ensemble of differential evolution and

Adam for training feed-forward neural networks,” Information Sciences,

vol. 608, pp. 453–471, 2022. https://doi.org/10.1016/j.ins.2022.06.036

[20] F. Xie, L. Li, L. Li, Y. Huang, and Z. He, “A decomposition-based multi-

objective Jaya algorithm for lot-streaming job shop scheduling with

variable sublots and intermingling setting,” Expert Syst Appl, vol. 228,

p. 120402, 2023. https://doi.org/10.1016/j.eswa.2023.120402

[21] S. K. Chaurasiya, A. Biswas, A. Nayyar, N. Zaman Jhanjhi, and R.

Banerjee, “DEICA: A differential evolution‐based improved clustering

algorithm for IoT‐based heterogeneous wireless sensor networks,”

International Journal of Communication Systems, vol. 36, no. 5, p.

e5420, 2023. https://doi.org/10.1002/dac.5420

[22] Z. H. Ding, Z. R. Lu, and F. X. Chen, “Parameter identification for a

three-dimensional aerofoil system considering uncertainty by an

enhanced Jaya algorithm,” Engineering Optimization, vol. 54, no. 3, pp.

450–470, 2022. https://doi.org/10.1080/0305215X.2021.1872558

[23] R. Rao, “Jaya: A simple and new optimization algorithm for solving

constrained and unconstrained optimization problems,” International

Journal of Industrial Engineering Computations, vol. 7, no. 1, pp. 19–

34, 2016. https://doi.org/10.5267/J.IJIEC.2015.8.004

[24] R. Storn and K. Price, “Differential evolution–a simple and efficient

heuristic for global optimization over continuous spaces,” Journal of

global optimization, vol. 11, no. 4, pp. 341–359, 1997.

https://doi.org/10.1023/A:1008202821328

[25] J. Wang, A. Sano, T. Chen, and B. Huang, “Identification of

Hammerstein systems without explicit parameterisation of non-

linearity,” International Journal of Control, vol. 82, no. 5, pp. 937–952,

2009. https://doi.org/10.1080/00207170802382376

[26] H. V. H. Ayala, D. Habineza, M. Rakotondrabe, and L. dos Santos

Coelho, “Nonlinear black-box system identification through

coevolutionary algorithms and radial basis function artificial neural

networks,” Applied Soft Computing, vol. 87, p. 105990, 2020.

https://doi.org/10.1016/j.asoc.2019.105990

22 Journal of Measurement, Control, and Automation

