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Abstract

This paper addresses the trajectory-tracking problem for nonholonomic wheeled mobile robots subjected to model uncertainties and unknown
external disturbances. In contrast to existing approaches that concentrate primarily on the kinematic control loop, this paper adopts a
hierarchical control structure for the wheel mobile robot, including an outer kinematic loop and an inner dynamic loop. For the dynamic control
loop, a dynamic controller combining integral terminal sliding mode control and a disturbance observer is developed to achieve disturbance
rejection and chattering reduction. For the kinematic control loop, the kinematic controller is designed for accurate trajectory tracking control.
Based on the Lyapunov stability theory, the stability analysis is given for both the disturbance observer and the double-loop tracking controller.
Furthermore, the Particle Swarm Optimization algorithm is employed to optimize the control gains, thereby enhancing the overall performance
of the control system. The simulation result using MATLAB software is conducted to confirm the effectiveness of the proposed method.
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1. Introduction

Due to the advantages of high flexibility, easy operation,
fast and stable motion, high energy efficiency, and strong
system integration, wheeled mobile robots (WMRs) have
been widely used in various fields, such as autonomous
navigation, surveillance, smart warehousing, industrial
inspection, environmental monitoring, autonomous delivery
services, medical care, and so on [1, 2, 3, 4, 5].

In general, the problem of trajectory-tracking control for
the WMRs has remained a core issue and has consistently
attracted considerable attention in the fields of robotics and
industrial control. It is well known that designing control
systems for the WMRs must address inherent challenges
such as nonlinear coupling, nonholonomic constraints, and
underactuated dynamics [12]. Furthermore, it is noteworthy
that WMRs are often required to carry additional payloads
such as manipulators, sensors, or auxiliary batteries [13].
These additions result in variations in payload mass and
its spatial distribution, which constitute a major source
of parameter uncertainties in mobile robots, particularly
influencing the system’s mass and moment of inertia. Besides,
to enhance the applicability of the system in real-world tasks,
external disturbances should be taken into account to improve
the robot’s performance. In recent years, various control
approaches have been attempted to tackle these control issues
of the WMR, including PID control [6], Sliding mode control
(SMC) [7, 8], Fuzzy control [9], Neural network-based control
[11], Model predictive control (MPC) [10] etc. Although these
control approaches achieve some outstanding performance
for the WMRs, such as fast error convergence, robustness
against uncertainties and external disturbances, they also have
some drawbacks. For instance, the chattering effect is often

neglected, the issues of optimality and controller parameter
selection are not thoroughly addressed, and the computational
burden remains significant.

In the existing research results, Sliding Mode Control
(SMCQ) is well established in the literature as an effective
nonlinear control methodology. Its extensive application
within the field of control engineering systems is primarily
due to its intrinsic robustness to disturbances and model
uncertainties. The SMC technique has been widely employed
for trajectory tracking control of the WMRs. For instance, the
conventional SMC method is proposed to design the trajectory-
tracking controller of the WMRs, ensuring that the tracking
errors asymptotically converge to zero. [14]. The recursive
terminal SMC [15], fast nonsingular terminal SMC [16],
and nonsingular recursive-structure terminal SMC [17] were
applied to NWMR to achieve the finite-time tracking error
convergence. The core idea of SMC lies in two fundamental
problems: constructing the sliding surface and formulating a
control law that ensures system stability, typically established
via Lyapunov-based analysis [18]. The control input in SMC
is generally decomposed into two distinct components: the
equivalent control law and the switching control law [19].
The equivalent term is responsible for driving the system
trajectory toward the sliding surface, while the switching term
maintains the trajectory on the surface and guides it toward
the origin. Although the robustness of the SMC technique
against model uncertainties and external disturbances can be
enhanced by incorporating a robust term with a sufficiently
large control gain, typically exceeding the estimated upper
bound of disturbances. In particular, if the control gain is set too
high, it can cause high-frequency oscillations, usually known as
"chattering", which negatively affect control performance and
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may shorten the lifespan of actuators. On the other hand, if the
gain is too small, especially when sudden or strong disturbances
occur, the control system may not respond effectively, leading
to poor tracking accuracy and potential instability. These
challenges have motivated the development of advanced robust
control strategies that aim to balance disturbance rejection
capabilities with smooth control effort.

To overcome this limitation of the SMC technique, the
disturbance estimation methods are usually employed to
estimate and compensate for these unknown disturbances.
The key advantage of the approach is that it only requires
the control gain to be slightly larger than the observation
error, rather than the disturbance itself, thus significantly
mitigating the chattering effect. Based on the highlighted
advantages identified in the above analysis, a variety of
disturbance rejection techniques have been extensively studied
for the WMRs, including Active disturbance rejection control
(ADRC) [20], Extended state observer (ESO) [21], and
Disturbance observer (DO) [22]. Widely acknowledged for
its effectiveness in disturbance estimation techniques, the
disturbance observer has been employed in the WMR systems
[23, 24] to estimate lumped disturbances, including the
model uncertainties and external disturbances. Under the
assumption of bounded disturbances and slowly varying noise,
the disturbance estimation error will converge to a bounded
neighborhood of zero, thereby enabling effective disturbance
rejection via a feedforward compensation mechanism.

This paper presents a robust trajectory-tracking control
design for a nonholonomic WMR subjected to unknown
external disturbances and parameter uncertainties, considering
the "chattering" reduction and the optimal control gains. The
main contributions of this study are listed as follows

e This study adopts a hierarchical control structure,
including a kinematic control loop and a dynamic control
loop. It is worth noting that previous studies in [25,
26] only considered the control of the kinematic loop
of the nonholonomic WMR, neglecting the dynamic
characteristics and interactions between actuators and the
robot body, which can lead to degraded performance in
practical implementations.

* To achieve the disturbance rejection and the "chattering"
reduction, this paper utilizes a nonlinear disturbance
observer to estimate and compensate for the lumped
disturbances, including unknown external disturbances
and model uncertainties. As a result, the WMR is able to
achieve accurate trajectory tracking while simultaneously
mitigating the chattering effect observed in SMC
approaches.

* This paper considers the optimal control gains for both
kinematic and dynamic controller by employing Particle
Swarm Optimization (PSO) algorithm.

This paper is organized as follows: In Section 2, the
kinematic and dynamic models of the nonholonomic WMR
are established. In Section 3, the detail control design of the
double-loop control structure based on a disturbance observer
and a PSO algorithm are presented. In Section 4, a simulation
result is provided. Finally, Section 5 concludes this paper.

2. Wheel mobile robot

2.1 Dynamic model

Consider a nonholonomic wheel mobile robot (WMR)
system as illustrated in Fig. 1 and Table. 1. Each of the two
drive wheels is equipped with an independent DC motor that
generates torque to determine the motion and orientation of the
robot.

o

Figure 1: The nonholonomic wheel mobile robot platform

Table 1: Nomination

Symbols  Description Value Unit
o the mass of robot 4.5 kg
Iy the inertia of robot 2.7 m
b the distance from mass center 0.1 m

to each wheel
r the wheel radius 0.05 kg.m?
X the x-axis position m
y the y-axis position m
0 the yaw angle direction rad
v the linear velocity m/s
w the angular velocity rad/s

Define g = [x,y, 8]7 € R? as the position and orientation of
the WMR and 1 = [v,w]” € R? as linear and angular velocities
of the WMR. According to [27], the kinematic model of the
nonholonomic WMR is described as follows

X cosf 0 "
g=|y|=|sin6 O [w} =S(g)n e
0 0 1

Similar to [31, 33], based on the Euler-Lagrange
formulation, the dynamic model of the nonholonomic WMR is
described as follows

M(q)i+G(q)+F(q)+ 7 =B(q)t—A" (q)A )

where A = —m(ysin(8)+xcos(6)) 86 is the vector of Lagrange
multipliers corresponding to the constraint forces, 7; €
R3 is the external disturbance, T = [1,7,]7 € R? are the
control torques generated by the left and right driven
wheels, respectively. M(q) represents the inertia matrix, G(q)
represents gravitational force vector, F(g) is friction force
vector, B(q) represents the control matrix and A(g) represents
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constraint Jacobian matrix. The expressions of M(q), G(q),
F(4), B(g), and A(q) are described as follows

m 0 0 cosf cos6
M(g)=|0 m O0f; B(q)=- |sinf sin6
0 0 I "I'b b
—sin@ 0
AT(g)=| cos® |: G(g)=F(g) = |0
0 0
Taking the time derivative of (1), we have
G=S(q)n+S(g)m 3)
Substituting (3) to (2), it yields
M(q)(S(g)n +S(q)1) + 7 = B(g)t—AT ()2 )

By multiplying both sides of (4) with S7(q), the
nonholonomic constraint A7 (¢)A can be eliminated due
to ST(q)AT(q) = 0, as stated in [32]. Besides, we also
obviously have S(q)M(q)S(g) = 0. The dynamic model of the
nonholonomic WMR can be written as follows

M7 +7% =Bt (5)

where 7; = ST (¢)1; € R? and

_ m 0 _ 11 1
M‘h J’ B_rb w}
Assumption 1. The parameter uncertainties of the WMR are
assumed to satisfy the following conditions

m=mgy+ Am

(6)
I =Iy+Al
where (.)o and A(.) represent the nominal parameters and
uncertaties, respectively.

Hence, the M can be decomposed as follows

- —_m() 0 Am 0
M_MMAM_[O A+{O N} @)

Substituting into (5), it yields
Mon = Bt — (AM1) + ;) ®)

Remark 1. [t is widely known that wheeled mobile robots
usually move on a flat surface; therefore, their potential energy
can be considered negligible. In addition, the nonholonomic
constraints add more limits, restricting the robot’s movement
to directions at right angles to the axes of the driving wheels.
As a result, the robot moves by rolling without slipping

Remark 2. Due to the inherent complexity of the dynamic
model of the nonholonomic WMR, the kinematic model is
commonly utilized in the design of motion controllers to reduce
the workload associated with model analysis and control
design. However, the dynamic model remains crucial in control
design, especially for applications that demand high speeds or
carry heavy payloads.

2.2 Control problem

Consider the desired motion and orientation of the WMR
qa = [xdvydv ed]T S RS as follows

qa= |Ya| = |sinb; O €))

X4 cosf; O {Vd]
6, 0 1

Wa

where 1y = [vg,wy]” € RR? are the desired linear and angular
velocities that can be calculated by

Vg =\/X3+y3
XaVa —XaYa
g+ 5

(10)
Wgqg = Gd =

Inspired by [29, 30], by carrying out the coordinate
transformation from the global frame to the robot frame, the
tracking error of the WMR e, = [ex, ey, eq]” € R? is formulated
as follows

ey cos® sin@ 0| |xg—x
eg=|ey| = |—sin@ cos@ O] |ya—y (11)
eq 0 0 1| 16;,—6

Thus, the tracking error dynamics of the WMR is
formulated as follows

éx eyw+vgcoseg —v
ég=|é | = | —exw+vgsinegy (12)
ég Wqg —Ww

The control objective of the mobile robot is to determine
the virtual linear and angular velocities and to design control
torques that ensure the asymptotic convergence of position and
orientation errors to zero. This enables the mobile robot to
accurately track a desired reference trajectory.

3. PSO-based robust controller

To tackle this control problem, a hierarchical control
structure is proposed, consisting of a kinematic controller and a
dynamic controller. The kinematic controller is responsible for
generating the desired linear and angular velocity signals based
on the reference trajectory and the current tracking errors. The
dynamic controller is then designed to ensure that the actual
motion of the robot accurately follows the desired velocities
while maintaining robustness against model uncertainties and
unknown external disturbances.

3.1 Kinematic control loop

For the tracking error dynamics in (12), the virtual linear
and angular velocities are adopted as follows

crex+vgcos(eg)

Mle= [WJ B [Wd + c2vaey +c3vasin(eg) 4

where ¢y, ¢; and c3 are positive constants to be tuned.

Theorem 1. For the kinematic model of the nonholonomic
WMR (1), based on the tracking error dynamics (12), in
the term of the virtual velocities (13), the tracking error e,
converges asymptotically to zero as t — oo.
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Proof. Choosing the Lyapunov candidate function as
follows

1 1
L &2 + —e2

=5 +l(1 —cos(eg))

14
25T (14

Taking the time derivative of (14) along the tracking error
trajectory (12) using (13), it yields

; ) ) I . )
Ly =ecé,+eyé, + —sin(eg)ég
2

=e(eyw+vycoseqg —v) +ey(—exw+vgsineg)
1 . s)
+ P sin(eg)(wqg —w)
2

=—cre? - ijdsinz(eg)
e

It is noted that the desired linear velocity v, is positive,
thus L; < 0. Based on the Lyapunov stability, the tracking error
dynamics (12) is asymptotically stable.

Then, the next work is to design the control torque inputs
7 such that the actual velocities 1 () asymptotically track
the virtual velocities 1.(¢) as ¢t — oo. Once the conditions
of limy_ye |g—qq| — 0 and limy_e |7 —Ny| — O are met,
the WMR achieves trajectory-tracking following the desired
reference trajectory.

3.2 Dynamic control loop

The dynamic model of the nonholonomic WMR (8) can be
rewritten as

n=Ht+¢(t) (16)

where H = [¥o] B and (r) = (g1, ] = — (W] (AN +
fd) cR2.

Assumption 2. It is considered that (t) acts as a lumped
disturbance, which is an unknown and time-varying vector
including external disturbances and uncertain factors. The
disturbance and its derivative are assumed to be bounded
by |[g]| < x1 and ||¢|| < X2, where X1 and ), are positive
constants.

The main approach is based on reconstructing the original
system’s model (16) to establish a lumped disturbance vector
(1), which includes model uncertainties and unknown external
disturbances. Subsequently, a disturbance observer (DO) is
developed to accurately estimate and compensate for the
lumped disturbances, while an integral terminal sliding mode
control law is designed to achieve accurate trajectory tracking.
The stability of the closed-loop system is proven by employing
the Lyapunov stability theory.

The following DO is designed as follows

i(t) =—D(n)[Ht+w(n) +2(1)]
S(1) =z(t) +yw(n)

where &(t) = [&1,&]7 € R? is the estimated value of ¢(t),
w(n) € R? is a nonlinear function and D(1) = dy(n)/dn €
R?*? is a observer gain. For the dynamic model of the WMR

(16), the dynamics of the estimation error ¢, (¢) = ¢(t) — (¢)
can be described as

Ge(1) = ¢(1) = D(M)g(t)

a7)

(18)

Theorem 2. Under the Assumption 2, by choosing observer
gain D(n) that satisfies D(n) — 0.5, > 0, the estimation
error dynamics (18) is locally input-to-state stable (ISS). The
estimation error is bounded as t — oo as lim;_,o | |G, (1)]| < O,
where G is a positive constant

Proof. Choosing the Lyapunov candidate function as

1
L=568 ¢ (19)
Taking the time derivative of (19) along the trajectory of
the estimation error dynamics (18), it yields

L =¢lé = (¢-D(n)s.)

1 1.
<- <D(n) - 2Iz> S et 5676 (20)

1
<— <D(n) — 212) o +c

where ¢ = 0.5||x2||*> is a positive constant. By choosing
D(n)—0.5I, > 0, the estimation error dynamics (18) is locally
input-to-state stable.

It is noted that the control torque input is expressed in the
following form 7 = —H !¢ + u. The auxiliary control input
u € R? is designed to ensure the velocity tracking error en =
[ey, e,]T =N —n. asymptotically converge to zero. The closed-
loop error dynamics for ey can be obtained as

én=H(—H '¢+u)+¢—1. en
=Hu—"nNc+¢
Remark 3. It is worth emphasizing that the bounded
disturbance estimation error G, is significantly smaller than
its disturbance ¢. In robust control strategies, high control
gains often lead to undesirable "chattering" problems. The
outstanding preponderance is that it only requires significantly
smaller control gain, thereby considerably mitigating the
"chattering" issue.

The next work is to design the control input u that achieves
the asymptotic stability of the velocity tracking error dynamics
(21), considering the influence of the bounded uncertain term
Ge- A integral terminal sliding mode surface is defined as

5= en(t)—en(0)+ B / "Sig®(en)dt 22)

where 0 < a < 1, B > 0, and sig%(ey) = |en|*sign(ey).
Taking the time derivative of s using (21), it yields

§=Hu—1Nc+¢ +Psig¥(en) (23)
The control input u can be derived as
u=—H""(—flc+Psig®(eq) +kis+ksign(s)) (24)

where k; and k; are positive constants to be tuned.

Theorem 3. For the error dynamic model of the nonholonomic
WMR (21), in term of the control input (24), the velocity
tracking error ey is asymptotically stable.
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Proof. Choosing the Lyapunov candidate function as

1
L= —sTs

7 (25)

Taking the time derivative of L3 along the state trajectory
of (21) using (24) as

Ly=s"s=s" (Hu—1. + g + Bsig*(ey))
=Sy (H( —H ™' (= 1c+ Bsig®(en) +kis+kasign(s)))

*ﬂc+€e+ﬁ5iga(9n))

= —kis"s — (kasign(s) — )
(26)

By choosing k; > o, based on the Lyapunov stability, the
velocity tracking error dynamics is asymptotically stable. The
velocity tracking error will converge to zero as t — oo.

Remark 4. In practical application, the discontinuous-time
switching term kysign(s) could cause the "chattering" issues.
One of the popular techniques that overcomes this limitation is
to replace the switching term by smoothing the switching term,
usually sat(s). The following sat(.) function can be described
as

)= {Bgu i .
where 8 > 0 is a small constant.

Once, the control input u can be modified as
u=—H'(—1c+PBsig¥(en) +kis +kosat(s)) (28)

The control input is designed to guarantee the stability of
the position and velocity tracking error dynamics based on
the Lyapunov stability theory. The other issue is how to tune
the optimized control gains to enhance the performance of the
mobile robot without violating stability. For example, in the
"chattering" reduction application, it is clear that the control
gain ky has to be chosen small enough. The problem of tuning
the optimal control gains will be discussed in the next section.

3.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a widely used
technique for tuning controller parameters due to its
effectiveness and simplicity. The core concept involves
modeling a group of particles as a population of candidate
solutions that explore the search space by following a set of
straightforward mathematical rules. Each particle updates its
trajectory by considering both its own historically best position
and the best position identified by the entire swarm. As more
optimal solutions are found, these best positions are iteratively
refined, leading the swarm toward convergence on an optimal
or near-optimal solution. In contrast to backpropagation-based
neural network algorithms [28], PSO typically requires fewer
hyperparameters, achieves faster convergence, and maintains a
more streamlined algorithmic structure.

The PSO procedure begins by initializing a population of
N particles, where each particle encodes a possible solution

within a D-dimensional space. Their initial positions X; and
velocities V; are randomly generated and defined as follows:

X; =l + (Mb — lb) X rand(l,D)

V.0 (29)

where [, and u;, are the lower and upper bounds of the
control gains, respectively, each particle evaluates the objective
function value f at its current position. This value is then
compared with the particle’s personal best position (P, ) and
the global best position (G, ) found by the swarm. Based on
this comparison, each particle updates its velocity and position
as follows

Vi(t +1) =wVi(t) + b171 (Poessi — Xi(t)) + bara (Gpesr,i — Xi(1))
Xi(Z‘—F 1) =X; l) +7LVl(f+ 1)

(30)
where i = 1,...,N, by,by > 0 are the learning factors, w is

inertia factor, ry,r, are random numbers belong to [0, 1], and
A > 01is a scale factor.

Choose the training
sample X;(0) and V;(0)

Update Ppege; and Gpese
by evaluating objective
function vale f

I

Update position and
velocity using (26)

Meet the number of
iterations or allowable
error conditions

No

Optimal control gains

Figure 2: The PSO algorithm

During each iteration, the objective function f is evaluated
at the updated position of every particle. If the resulting
value surpasses the particle’s previous personal best Py i,
this personal best is updated accordingly. Likewise, if any
particle achieves a better objective value than the current
global best Gy, the global best is also updated. This iterative
process continues either until a predefined number of iterations
is completed or until no further improvement in G,y is
observed over a specified number of consecutive iterations.
Ultimately, the algorithm outputs the optimal value of the
objective function and the associated position in the search
space, which corresponds to the optimal control gains.
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4. Simulation result

In this section, a simulation result conducted using
MATLAB software is provided to confirm the effectiveness of
the proposed method.

The initial condition of the WMR is set as ¢(0) =
[1,1,7/6]7, and the initial position and orientation references
are set as g4(0) = [1,2,7/3]7. The desired linear and angular
velocities of the WMR are set as vy =2 (m/s) and w, = 1
(rad/s), respectively. The parameter uncertainties are assumed
as Am = 0.1mg and Al = 0.11y. The external disturbance is
assumed as follows

sin(z +0.5) sin(0.27)
cos(t+0.4)sin(0.2¢)
sin(z +0.5) sin(0.15¢)

7y =03x% (Nm) €29

The parameter of the disturbance observer and sliding
surface (22) is chosen as D(n) = diag([10,10]), o = 0.5, and
B = 2.0. The PSO algorithm designed for the WMR to find
the optimal control gains is set up as:

 Control gain to be optimized: ¢y, c2,c3,k; and k

* Objective function:

7= [ lleaolldr+ [ e

 Population size: 10 particles

¢ Maximum number of iterations: 30 iterations

e Lower and upper bounds (l,,up): Parameters are
initialized within the range [0.01, 10]

* Learning factors (by,b;): 2

* Slace factor (A): 1

e Inertia factor (w): 0.7

0.05

& 0

-0.05

Figure 3: The disturbance estimation

The disturbance estimations of the lumped disturbances
() are shown in Fig. 3. As shown in the Fig. 3, the disturbance
observer estimates the lumped disturbances accurately. The
Fig. 4 shows both the global best fitness and mean current
fitness across iterations, indicating the convergence of the PSO
algorithm. The convergence curves clearly show a decreasing
trend and stabilize after several iterations. The Fig. 5 presents
a comparative simulation between the proposed controller
and a conventional ITSMC controller without a nonlinear
disturbance observer. The tracking errors of the mobile robot
ex(t), ey(t), eqg(t), ey(t), and e, (r) shown for both cases.
The results demonstrate that with the proposed controller,
all tracking errors converge to zero after approximately
5 seconds, indicating high accuracy and robustness under

—~4— global best fitness

&— mean current fitness

Fitness value

0 5 10 15 20 25 30
Number of iterations

Figure 4: The evolution of the best value found by PSO and the mean
current fitness over all particles

‘ proposed controller = — conventional (',ontrollcr‘
0 0.1
D
A
S -05 1 & o ag—r—rs :
- ' -01
0 5 10 15 20 5 10 15 20
t [s] t [s]
0.1
1 -~ N
~
N V! ‘s
305 g 01y

0 5 10 15 20
t [s]
0 = = =
< 05 0y
A
0 5 10 15 20

t[s]

(a) The position and the orientation tracking errors

proposed controller = — conventional controllm"

5 10 15 20

-0.5

(b) The velocity tracking errors

Figure 5: The tracking errors of the mobile robot

external disturbances. In contrast, the conventional controller
fails to cope with the disturbances, while the proposed method
achieves better tracking. The position and orientation responses
of the mobile robot are shown in Fig. 6. To further demonstrate
the trajectory-tracking capability of the mobile robot under the
proposed control law, Fig. 7 illustrates the robot’s trajectory
in three-dimensional space. It is easy to observe that the
wheel mobile robot perfectly tracks the desired reference.
Furthermore, it is also worth emphasizing that the chattering
has been eliminated or significantly reduced by employing a
tanh(.) function instead of a switching function and by using
Particle Swarm Optimization (PSO) to optimize the control
gains.
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Figure 6: The position and orientation responses of the mobile robot

Reference trajectory
4l - # —Robot trajectory
£t 1
=N
2 L 4
-1 1
 [m]
Figure 7: The 2D trajectory of the mobile robot
100
—7
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(a) The control torques of the proposed method
—
50 .
’E‘
=
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& ’
'I
750 L Il Il Il ]
0 5 10 15 20

(b) The control torques of the nominal method

Figure 8: The control torques: 8a. proposed controller 8b norminal
controller using only terms (12) & (24)

To verify the effectiveness of the proposed method on
chattering reduction, a comparison of the control torques
generated by the proposed controller and the nominal controller
is adopted, as shown in Fig. 8. As shown in Fig. 8b, the
control torque with the nominal controller using only terms
(12) & (24) is high chattering. On the other hand, the control
torque generated by the proposed controller is smooth Fig. 8a,
with no abrupt changes observed in the control signals,
indicating improved continuity and system stability. This
helps to minimize stress on the actuators and the mechanical
components of the system.

5. Conclusion

In this paper, a robust trajectory-tracking controller based
on the PSO algorithm is developed for the wheel mobile robot
system to achieve accurate trajectory tracking performance
and strong robustness against lumped disturbances, including
unknown external disturbances and parameter uncertainties.
The stability analysis for the disturbance observer and the
double-loop loop tracking controller has been shown by
Lyapunov methods. Furthermore, the "chattering” problem
is effectively mitigated by employing the disturbance observer
and PSO algorithm. Finally, the robustness and effectiveness of
the proposed controller are illustrated by the simulation results.
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