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Abstract

This paper addresses the stabilization problem of the double inverted pendulum on a cart, a benchmark system that exhibits strong nonlinearity
and instability. To enhance control performance under realistic operating conditions, two hybrid control schemes are proposed: the fuzzy
linear quadratic regulator and the fuzzy linear quadratic gaussian controller. The former strategy is constructed by integrating fuzzy logic
with a classical linear quadratic regulator framework to improve adaptability and dynamic response. At the same time, the latter strategy
extends this approach by incorporating a Kalman filter for robust state estimation in noisy environments. Furthermore, a high-gain observer
is developed to estimate unmeasurable velocity states using only position and angular measurements, thereby reducing the dependency
on full-state sensing. Simulation studies are conducted for both the ideal case, with complete and noise-free measurements, and the
realistic case, involving measurement noise and external disturbances. The results demonstrate that the proposed fuzzy linear quadratic
gaussian controller with observer consistently outperforms its counterpart - the fuzzy linear quadratic regulator, and achieves superior robustness.
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1. Introduction

The control of underactuated systems remains one of the
most challenging research topics in control engineering and
robotics [1]. Among typical systems such as two-degree-of-
freedom pendulum systems [2], [3] or inverted pendulum-on-
cart systems [4], the double inverted pendulum on a cart (DIPC)
has been extensively investigated as a benchmark problem due
to its rich dynamics and practical relevance. The DIPC exhibits
strong nonlinear behavior, multivariable coupling, and inher-
ently unstable equilibrium points, making it an ideal testbed
for evaluating and comparing advanced control algorithms.
Beyond its theoretical appeal, the DIPC also has practical
significance since its dynamic characteristics are analogous
to many engineering applications, such as robotic manipula-
tors [5], walking robots [6], self-balancing vehicles [7], and
aerospace systems [8]. Therefore, designing effective con-
trollers for the DIPC not only contributes to academic research
but also provides valuable insights into the control of complex
real-world systems.

Over the years, a wide range of control methods have been
applied to the DIPC, including classical approaches such as the
Linear Quadratic Regulator (LQR) and the Linear Quadratic
Gaussian (LQG) controller. These controllers are attractive
because they are grounded in optimal control theory and pro-
vide systematic procedures for balancing performance and
control effort. However, their performance is often limited
when applied to nonlinear systems or under conditions where
the model is uncertain, and disturbances are present. For ex-
ample, the standard LQR relies on the availability of complete
and accurate state information, which is often impractical in
real-world scenarios. Likewise, LQG controllers combine the

Kalman Filter [9] with LQR to handle noise, but they still as-
sume linear system behavior, which restricts their effectiveness
when faced with strong nonlinearities. To address these short-
comings, researchers have introduced a variety of advanced
strategies, including adaptive control, sliding mode control,
neural-network-based control, and model predictive control.
While these methods improve robustness and adaptability, they
can be computationally demanding or difficult to implement in
real-time applications. Even though, compared with other un-
deractuated systems such as the inverted pendulum or overhead
crane, which have been extensively studied in various aspects
including hierarchical sliding mode control [10], optimal con-
trol [11], robust control techniques [12], and fault-tolerant
control [13], the methods to enhance the performance of the
DIPC remain quite limited.

In this context, fuzzy logic–based methods [14] have
emerged as a promising solution for controlling nonlinear and
uncertain systems such as the DIPC. Fuzzy controllers ex-
ploit linguistic rules and membership functions to approximate
nonlinear mappings without requiring an exact mathematical
model. By combining fuzzy logic with classical control frame-
works such as Lyapunov theory and Linear Matrix Inequalities
(LMIs) [15], hybrid strategies can be developed that inherit the
strengths of both approaches [16]. Not only that, the exploita-
tion of fuzzy logic has been developed to represent different
dynamic models of nonlinear systems, including state-space
models [16], fractional-order systems [17], and descriptor mod-
els [12], [18], by using the Takagi–Sugeno fuzzy model. Obvi-
ously, the advantages of fuzzy logic in control design have been
explicitly demonstrated. However, the complexity remains
the largest barrier to applying the aforementioned methods to
experiments. A simpler way to achieve robustness while re-
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ducing complexity is to combine fuzzy logic with LQR design.
One such example is the Fuzzy Linear Quadratic Regulator
(FLQR) [19], which integrates fuzzy inference with the LQR
design. This hybrid controller enhances adaptability, provides
smoother control actions, and improves robustness against
parameter variations and modeling uncertainties. However,
despite these advantages, challenges remain. When system
states cannot be measured directly or when sensor signals are
corrupted by noise, the FLQR controller cannot achieve its full
potential. Existing studies have often assumed ideal measure-
ment conditions, which limit the applicability of these methods
to practical engineering problems. Therefore, there is a need
for a more comprehensive solution that addresses both the non-
linear characteristics of the DIPC and the practical constraints
of noisy and incomplete state measurements.

To overcome these challenges, this paper proposes a new
control framework that combines fuzzy logic, optimal con-
trol, and advanced state estimation techniques. Specifically, an
FLQG controller is developed by integrating the Kalman Filter
into the FLQR structure. The Kalman Filter provides robust es-
timation of unmeasured or noisy states, enabling the controller
to function effectively even in the presence of measurement
disturbances. In addition, a high-gain observer (HGO) [20]
is incorporated to estimate unmeasured velocity states based
solely on measurable variables such as cart position and pendu-
lum angles. The HGO is particularly attractive because of its
simple structure, fast convergence, and ease of implementation
in both simulations and real-time applications. By combin-
ing the FLQG controller with the HGO, the proposed method
addresses the dual challenges of system nonlinearity and mea-
surement noise. This integrated approach aims to improve
stability, robustness, and accuracy in the stabilization of the
DIPC under both idealized and realistic operating conditions.

2. Modeling

The DIPC considered in this study is shown in Fig. 1. The
cart translates along a horizontal track with position denoted by
θ0. Two rigid links are connected in series: the first pendulum
is hinged to the cart and rotates with respect to the vertical by
angle θ1, while the second pendulum is attached to the tip of the
first and forms angle θ2 with the vertical. This configuration is
a classical underactuated, strongly nonlinear benchmark widely
used to assess advanced control methods.

The cart has mass m0 = 0.8 kg. The first and second

Figure 1: Double inverted pendulum on a cart model.

pendulums have masses m1 = 0.5 kg and m2 = 0.3 kg, lengths
L1 = 0.3 m and L2 = 0.2 m, and moments of inertia J1 =
0.015 kg ·m2 and J2 = 0.009 kg ·m2, respectively. The lengths
l1 = L1/2 = 0.15 m and l2 = L2/2 = 0.1 m. The gravitational
acceleration is g = 9.8 m/s2. These parameters are employed
in the subsequent Lagrangian formulation and the derivation
of the system dynamics. Applying the Lagrange equation, the
dynamic model of the system is obtained as follows:

d
dt

(
∂L
∂ θ̇

)
− ∂L

∂θ
= Q. (1)

The generalized coordinate vector is defined as θ =[
θ0 θ1 θ2 θ̇0 θ̇1 θ̇2

]T , with the generalized force vec-

tor given by Q =
[
u 0 0

]T . The variables θi and θ̇i, where
i ∈ {0,1,2}, denote the angular displacements and angular
velocities, respectively. The Lagrangian of the system is ex-
pressed as L = T −P, where Ti represents the kinetic energy
and Pi the potential energy of each component (i = 0,1,2),
while Q accounts for the generalized forces or torques acting
on the joints.

T = T0 +T1 +T2, P = P0 +P1 +P2.

The kinetic energies of the cart, the first pendulum, and the
second pendulum are determined, where the energy of each
pendulum consists of both translational and rotational compo-
nents.

T0 =
1
2

m0θ̇
2
0

T1 =
1
2

m1

[(
θ̇0 + l1θ̇1 cosθ1

)2
+
(
l1θ̇1 sinθ1

)2
]
+

1
2

J1θ̇
2
1

T2 =
1
2

m2

[(
θ̇0 +L1θ̇1 cosθ1 + l2θ̇2 cosθ2

)2

+
(
L1θ̇1 sinθ1 + l2θ̇2 sinθ2

)2
]
+

1
2

J2θ̇
2
2

The potential energies are given by:

P0 = 0, P1 = m1gl1 cosθ1, P2 = m2g(L1 cosθ1 + l2 cosθ2)

Accordingly, the Lagrangian function can be written as:

L =
1
2
(m0 +m1 +m2)θ̇

2
0 +

1
2
(m1l2

1 + J1 +m2L2
1)θ̇

2
1

+
1
2
(m2l2

2 + J2)θ̇
2
2 +(m1l1 +m2L1)cosθ1θ̇0θ̇1

+m2l2 cosθ2θ̇0θ̇2 +m2L1l2 cos(θ1 −θ2)θ̇1θ̇2

− (m1l1 +m2L1)gcosθ1 −m2l2gcosθ2.

(2)

The equations of motion derived from the Lagrange formula-
tion are:

d
dt

(
∂L
∂ θ̇0

)
− ∂L

∂θ0
= u,

d
dt

(
∂L
∂ θ̇1

)
− ∂L

∂θ1
= 0,

d
dt

(
∂L
∂ θ̇2

)
− ∂L

∂θ2
= 0.

(3)
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Consequently, the dynamic equations of the DIPC can be writ-
ten as:

u = (m0 +m1 +m2)θ̈0 +(m1l1 +m2L1)cosθ1θ̈1

+m2l2 cosθ2θ̈2 − (m1l1 +m2L1)sinθ1θ̇
2
1 (4)

−m2l2 sinθ2θ̇
2
2 , (5)

0 = (m1l1 +m2L1)θ̈0 (6)

+(m1l2
1 + J1 +m2L2

1)θ̈1 +m2L1l2 cos(θ1 −θ2)θ̈2

+m2L1l2 sin(θ1 −θ2)θ̇
2
2 − (m1l1 +m2L1)gsinθ1, (7)

0 = m2l2 cosθ2θ̈0 +m2L1l2 cos(θ1 −θ2)θ̈1 +(m2l2
2 + J2)θ̈2

−m2L1l2 sin(θ1 −θ2)θ̇
2
1 −m2l2gsinθ2. (8)

The dynamic equations can be written in matrix form as:

D(θ)θ̈ +C(θ , θ̇)θ̇ +G(θ) = Hu (9)

where:

D(θ) =

 b1 b2 cosθ1 b3 cosθ2
b2 cosθ1 b4 b5 cos(θ1 −θ2)
b3 cosθ2 b5 cos(θ1 −θ2) b6

 ,

C(θ , θ̇) =

0 −b2 sinθ1θ̇1 −b3 sinθ2θ̇2
0 0 −b5 sin(θ1 −θ2)θ̇2
0 b5 sin(θ1 −θ2)θ̇1 0

 ,

G(θ) =

 0
−b2gsinθ1
−b3gsinθ2

 , H =

1
0
0

 .

The constants b1 through b6 are introduced to simplify the
representation of the system matrices. They are defined as
b1 = m0+m1+m2, b2 = m1l1+m2L1, b3 = m2l2, b4 = m1l2

1 +
J1 +m2L2

1, b5 = m2L1l2, and b6 = m2l2
2 + J2.

To facilitate controller design, the Lagrange equations of
motion in Eq. (9) are reformulated as a sixth-order system of
ordinary differential equations by introducing the state vector
θ ∈R6, θ =

[
θ0 θ1 θ2 θ̇0 θ̇1 θ̇2

]T
. Letting x= θ and

neglecting the explicit dependence of the system matrices on
the generalized coordinates and their derivatives, the dynamics
can be written in the compact state–space form

ẋ =

[
0 I

−D−1C 0

]
x+

[
0

−D−1G

]
+

[
0

D−1H

]
u. (10)

Because the dynamics of the DIPC are inherently non-
linear, a first–order linearization about the equilibrium point
θ = 0 is adopted to enable the application of optimal control
methods such as LQR. The system admits two equilibria: a
stable configuration with the first and second pendulums hang-
ing downward (θ1 = θ2 = 180◦) and an unstable configuration
with both pendulums aligned vertically upward against gravity
(θ1 = θ2 = 0◦). Linearization about the unstable equilibrium
yields the standard state–space model

ẋ = Ax+Bu,

y = Cx+Du,
(11)

with

A =

 0 I

−D(0)−1 ∂G(0)
∂θ

0

 , B =

[
0

D(0)−1H

]
,

C = diag(I6), D = 0.

3. Controller design

3.1 Fuzzy Linear Quadratic Regulator

The design of the FLQR begins with the formulation of the
underlying LQR controller. In this framework, the weighting
matrices are defined to balance state performance and control
effort. Specifically, the state weighting matrix Q ∈Rn×n penal-
izes deviations of the state variables, where n corresponds to
the order of the linearized system, while the control weighting
matrix R ∈ Rm×m penalizes the control input, with m denoting
the number of inputs. For the DIPC system, the model dimen-
sion is n = 6 and the control dimension is m = 1, reflecting six
state variables and a single control force applied to the cart.

The weighting matrices Q and R are defined as:

Q =


Q1 0 0 0 0 0
0 Q2 0 0 0 0
0 0 Q3 0 0 0
0 0 0 Q4 0 0
0 0 0 0 Q5 0
0 0 0 0 0 Q6

 , R = [R1]

The resulting control law generated by the LQR is given
by:

u =−Kx (12)

where the gain matrix K∈Rm×n is computed as: K=R−1B⊤P.
Here, P ∈ Rn×n is the unique, positive definite solution of the
Riccati Equation:

A⊤P+PA−PBR−1B⊤P+Q = 0 (13)

Fuzzy Logic Controllers (FLCs) operate through three
main stages: input, processing, and output. Sensor signals
are first pre-processed and mapped to membership functions
to generate fuzzy inputs. These inputs trigger a set of prede-
fined rules in the processing stage, and the fuzzy results are
then defuzzified into crisp outputs. In this work, the FLC ap-
proach is integrated with the optimal control method LQR to
form a hybrid controller. The FLC models are implemented
in Simulink using fusion functions, each receiving six inputs,
six DIP status variables, and producing two outputs: the error
e and the derivative of the error ec. Figure 2 illustrates the
resulting closed-loop system.

With a reference input of zero and the initial values of the
two pendulums set to π

6 radians, the parameters KE , KEC, and

Figure 2: Closed-loop DIPC system
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E

EC
NB NM NS ZE PS PM PB

NB NB NB NB NM NM NS ZE

NM NB NB NM NM NS ZE PS

NS NB NM NM NS ZE PS PM

ZE NM NM NS ZE PS PM PM

PS NM NS ZE PS PM PM PB

PM NS ZE PS PM PM PB PB

PB ZE PS PM PM PB PB PB

Table 1: The Fuzzy rules

KU were tuned through trial-and-error testing. Under these
conditions, the selected values were KE = 3, KEC = 0.3, and
KU = 32.

For the rule base, seven categorical variables were used:
(i) NB—Negative Big, (ii) NM—Negative Medium, (iii)
NS—Negative Small, (iv) ZE—Zero, (v) PS—Positive Small,
(vi) PM—Positive Medium, and (vii) PB—Positive Big. These
categories correspond to the seven fuzzy sets applied to both
inputs and outputs. The complete set of rules is presented in
Table 1.

Figure 3 illustrates the control surface of the fuzzy con-
troller, showing the relationship between the error (e), the
derivative of error (ė, denoted as EC), and the control output
(u). As observed, the surface exhibits a smooth and continuous
transition, indicating that the controller provides gradual and
stable control actions over the entire operating range. The
surface indicates appropriate rule tuning, with strong control
actions at large errors and near-zero output around equilibrium.

Figure 3: The FLC surface

To compute the fusion function, we used the following
values for the matrix K:

K = [Kθ0 ,Kθ1 ,Kθ2 ,K
′
θ0
,K′

θ1
,K′

θ2
]

These values in the matrix K are calculated from the pre-
viously simulated and optimized LQR control model. Sub-
sequently, the fusion function is computed using the formula
outlined below, with the values from matrix K being applied to

achieve optimal performance in combining the control signals.

Ff us(x) =


Kθ0
Kθ2

Kθ1
Kθ2

Kθ2
Kθ2

0 0 0

0 0 0
K

θ ′0
K

θ ′2

K
θ ′1

K
θ ′2

K
θ ′2

K
θ ′2




θ0
θ1
θ2
θ ′

0
θ ′

1
θ ′

2

 (14)

3.2 Fuzzy Linear Quadratic Gaussian controller

(14)
The combined state-space model is formulated as:[

ẋ
ε̇

]
=

[
A−BK BK

0 A−K fC

][
x
ε

]
+

[
1 0
1 −K f

][
Wd
Wn

]
(15)

The structure of the Fuzzy Linear Quadratic Gaussian
(FLQG) controller is developed by integrating the LQG and
FLQR approaches. In practical applications, it is often not
feasible to directly measure all the state variables of the system.
However, if the system is observable, the unmeasured states
can be estimated from the available output data. Furthermore,
when the measurement data are corrupted by noise, employing
an observer to estimate the system states becomes a rational
and widely adopted solution.

Figure 4: Block diagram of the FLQG.

The FLQG structure is established by incorporating a KF
into the FLQR control system, as shown in Figure 4. The KF
is essential when the state variables required by the FLQR
controller cannot be directly measured and must instead be
estimated. It performs this estimation using the input signals
of the DIPC system together with the experimentally measured
outputs, and the resulting estimated states are then supplied to
the FLQR controller.

3.3 High gain observer

In modern control systems, especially for highly nonlinear
systems like the double inverted pendulum on a cart, it is often
impractical to measure all state variables directly. Typically,
only the cart position and pendulum angles can be measured,
while the corresponding velocities are either difficult to mea-
sure or highly sensitive to noise when estimated via numerical
differentiation. Therefore, a state observer becomes an es-
sential component in the control architecture. The HGO is a
prominent state estimation technique due to its ability to pro-
vide fast and accurate estimates, particularly effective when the
system model is well-known and measurement noise is limited.
With its simple structure, the HGO is easy to implement in
both simulations and real-time systems, serving as a practical



Journal of Measurement, Control and Automation 5

bridge that enables controllers such as LQR to operate under
partial state measurement conditions.

In the previous sections, we introduced the LQG and
FLQG controllers for the double-inverted pendulum on a cart.
Both controllers employ the KF to estimate the state of the
system under noisy conditions. However, implementing the
KF requires full-state measurements of the system. In prac-
tice, obtaining complete state measurements is often infeasible
due to sensor limitations or measurement noise. To overcome
these challenges, we propose incorporating a state estimation
technique: the HGO as seen in Figure 5.

In the case of a double inverted pendulum on a cart, the
observer is designed to estimate the cart velocity and the angu-
lar velocities of both pendulums using the cart position and the
two pendulum angles as input. The measurable inputs of the
system are the cart position x1, the angle of pendulum 1 (x2),
and the angle of pendulum 2 (x3). Based on these measured
variables, the High-Gain Observer is designed to estimate the
unmeasurable states, namely the cart velocity ẋ1, the angu-
lar velocity of pendulum 1 (ẋ2), and the angular velocity of
pendulum 2 (ẋ3).

Figure 5: LQG and FLQG Observer Diagram

The observer is designed using an extended state model
with a 3-stage integrator structure:

x̂ =
[
x̂1 x̂2 x̂3 x̂4 x̂5 x̂6

]T

where:

x̂1 ≈ x1, x̂2 ≈ x2, x̂3 ≈ x3

are estimates of the measured states, and:

x̂4 ≈ ẋ1, x̂5 ≈ ẋ2, x̂6 ≈ ẋ3

are the estimated velocities. The observation errors are defined
as the differences between the measured and estimated states.

e1 = x̂1 − x1, e2 = x̂2 − x2, e3 = x̂3 − x3

The observer differential equations are given by:

˙̂x1 = x̂4 −
α2

ε
e1

˙̂x2 = x̂5 −
α2

ε
e2

˙̂x3 = x̂6 −
α2

ε
e3

˙̂x4 =−α1

ε2 e1

˙̂x5 =−α1

ε2 e2

˙̂x6 =−α1

ε2 e3

where: α1,α2 are high-gain coefficients. ε is a small positive
parameter (typically ε ≪ 1) used to accelerate convergence.

Remark 1. In the design of the High-Gain Observer (HGO),
the parameters α1 and α2 are introduced to tune the conver-
gence speed of the estimation error. The HGO structure is
formulated as an extended three-layer integrator model, in
which α1

ε2 determines the convergence rate of the error between
the measured and estimated states, and α2

ε
controls the ampli-

fication of the error signal in the first layer, directly affecting
sensitivity to measurement noise. After scanning the parameter
ranges:

α1 ∈ [5,12], α2 ∈ [3,8],

The selected values are:

α1 = 9, α2 = 6.

If these parameters are chosen too large, the estimated states
may become noisy and affect controller stability; conversely, if
they are too small, the estimation error increases and degrades
the performance of the FLQG controller.

4. Simulation Results

In this part, the developed controllers, i.e., the FLQR
and the FLQG, are modeled for the stabilization of the DIPC.
The system is evaluated using the parameters m0 = 0.8 kg,
m1 = 0.5 kg, m2 = 0.3 kg, L1 = 0.3 m, L2 = 0.3 m, J1 =
0.015 kg ·m2, J2 = 0.009 kg ·m2, and g = 9.8 m/s2. The initial
conditions are set to θ0 = 0 m, θ1 = π/6 rad, and θ2 = π/6 rad.
To enable state estimation, the high-gain observer is designed
with parameters α1 = 9, α2 = 6, and ε = 0.01.

4.1 The ideal case

The performance of the FLQR controller was eval-
uated through simulation under ideal conditions, in
which all output variables were assumed to be mea-
surable, and no measurement noise was present. The
simulation was conducted using the gain matrix K =
[3.16, −125.95, 145.03, 4.84, −1.08, 12.63] and the initial
state vector xT = [0, π/6, π/6, 0, 0, 0].

As shown in Fig. 6, the FLQR controller effectively regu-
lates the system states to their desired equilibrium points. In
particular, the pendulum angles θ1 and θ2 are stabilized, while
the cart position, which is subject to an external disturbance
that displaces it by 0.5 m every 40 seconds, is successfully con-
trolled and returned to the reference position. The figure further
illustrates the evolution of the angular signals θ0, θ1, and θ2
under the FLQR strategy. The simulation results demonstrate
that the FLQR controller achieves strong control performance
and exhibits high robustness against disturbances. Specifically,
it enhances dynamic performance measures such as settling
time (Ts), overshoot (PO), steady-state error (Ess), and root
mean square error (RMSE). Moreover, the controller consis-
tently maintains system stability under external disturbances,
with a detailed quantitative comparison of performance indices
provided in Table 2.

4.2 The realistic case: Noise and external disturbance

The simulation results obtained from the FLQR controller
were conducted under the ideal case, where no measurement
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Figure 6: The angle signals (u, θ0, θ1, θ2 ) with FLQR controller.

Table 2: Quantitative comparison of performance of LQR and FLQR
controllers under external disturbance.

Controller Joints
Parameters Position car (θ0) First Link (θ1) Second Link (θ2)

LQR

Ts 5.39 s 3.8 s 3.8 s
PO 1.13 m 0.6 rad 0.52 rad
Ess 0.001 0.001 0.001
RMSE 0.19 0.057 0.05

FLQR

Ts 4 s 3.6 s 3.6 s
PO 1.01 m 0.61 rad 0.52 rad
Ess 0.001 0.001 0.001
RMSE 0.17 0.055 0.046

noise was present, and all state variables were assumed to be
measurable. However, such conditions do not fully reflect the
actual implementation in a physical system. In practice, the
system is often affected by noise, and it is not always possible
to measure all variables, such as velocity and angular velocity.

To better approximate real-world conditions, the realistic
case was considered by introducing white noise with different
signal-to-noise ratios (SNRs) into the system during the sim-
ulation. At the same time, an HGO is employed to estimate
the three velocity variables θ ′

0, θ ′
1, and θ ′

2 from the measured
position variables θ0, θ1, and θ2.

The performance of the FLQR controller was then evalu-
ated under these noisy conditions, while the FLQG controller
demonstrated the capability to estimate the system states and
maintain effective performance even in the presence of mea-
surement noise.

Using the same parameters of the DIPC model and the
initial condition vector described earlier, the results indicate
that the FLQG controller provides effective disturbance rejec-
tion and preserves system stability throughout the simulation.

Figure 7: The angle signals (u, θ0, θ1, θ2 ) with FLQR and FLQG
controllers.

The key distinction between the FLQR and FLQG controllers
lies in their ability to handle disturbances. While the FLQR
controller lacks explicit disturbance filtering mechanisms, the
FLQG controller integrates algorithms designed to mitigate
the impact of external and measurement disturbances. As il-
lustrated in Fig. 7, disturbances noticeably affect the system
output under FLQR control, whereas this effect is significantly
reduced when the FLQG controller is applied. A quantitative
comparison of performance indices, including settling time
(Ts), overshoot (PO), steady-state error (Ess), and root mean
square error (RMSE), is provided in Table 3 under external and
combined disturbance conditions.

Table 3: Quantitative Comparison of Performance of LQG and FLQG
Controllers under Noise and External Disturbance.

Controller Joints
Parameters Position car (θ0) First Link (θ1) Second Link (θ2)

LQG

Ts 6.3 s 4.4 s 4.4 s
PO 1.8 m 0.61 rad 0.52 rad
Ess 0.015 0.0035 0.004
RMSE 0.29 0.065 0.059

FLQG

Ts 5.7 s 4.27 s 4.3 s
PO 1.44 m 0.62 rad 0.52 rad
Ess 0.01 0.003 0.003
RMSE 0.23 0.06 0.051

5. Conclusion

This work proposed and evaluated hybrid control strate-
gies for stabilizing the DIPC. By integrating fuzzy logic with
optimal control, the FLQR and the FLQG controllers have been
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developed, with an HGO added to estimate unmeasured veloc-
ity states from measurable positions and angles. Simulation
studies under both ideal and realistic conditions demonstrated
that, while FLQR performs well in noise-free scenarios, the
FLQG with HGO consistently achieves faster settling time,
reduced overshoot, lower steady-state error. These results con-
firm the effectiveness and practicality of combining fuzzy logic,
optimal control, and observer-based state estimation for robust
control of nonlinear and underactuated systems.
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