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Abstract

The paper proposes an effective control approach to a 3-DOF serial robotic arm actuated by electro-pneumatic servo systems (EPSS). The
robot control problem is divided into robot dynamics and pneumatic actuators sub-systems, and the control is subsequently elaborated for
each sub-system. The challenging task arises when dealing with pneumatic systems where system parametric information is very difficult to
acquired correctly. Hence, the Lyapunov-based control is formulated to derive the control signal in presence of external disturbances and model
uncertainties thank to the integrated disturbance observer. The closed-loop system stability is analytically proven through a series of Lyapunov
candidate functions. Simulations using MATLAB/Simscape Multibody Link plug-in on Solidworks are carried out to demonstrate the control
validity.
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Symbols

Symbols Units Description
m1 kg Upper arm mass with cylinder
m2 kg Forearm mass
m f kg Load mass with translation joint cylinder
I1 kg ·m2 Moment of inertia for upper arm

around the shoulder
I2 kg ·m2 Moment of inertia for forearm

around the elbow
P1P2 m Upper arm length
P1Pm1 m Distance from centroid of upper arm

to shoulder
P2Pm2 m Distance from centroid of forearm

to elbow
θ1 rad Upper arm rotation range
θ2 rad Forearm rotation range

Abbreviations

PRA Pneumatic Robotic Arm
EPSS Electro-Pneumatic Servo System
DOF Degree of Freedom
NDO Nonlinear Disturbance Observer

Tóm tắt

Bài báo trình bày phương án điều khiển robot 3 bậc tự do được truyền
động bằng khí nén. Bài toán điều khiển được chia nhỏ thành hai bài
toán con bao gồm động lực học robot và cơ cấu chấp hành khí nén,
dựa vào đó, bộ điều khiển được thiết kế trên các hệ con. Những thách
thức khi điều khiển đến từ việc khó khăn trong việc đo lường, xác
định tham số của hệ thống truyền động khí nén. Trong bài báo này,
bộ điều khiển được thiết kế dựa trên lý thuyết ổn định Lyapunov có
tích hợp bộ quan sát nhiễu dùng để ước lượng tham số bất định cũng
như nhiễu tác động lên đối tượng. Tính ổn định của hệ thống kín được
chứng minh và các kết quả mô phỏng cho thấy hiệu quả của phương
pháp đề xuất.

1. Introduction

In recent years, advances in technologies facilitate many indus-
trial automation processes. This creates an increasing demand
for actuators driven in high speed for the purpose of reducing
time consumption in industrial tasks like assembly process. In
comparison with servo motors, electro-pneumatic servo sys-
tems (EPSS) offer better characteristics such as low cost, high
power-to-weight ratio, the absence of magnetic field and simple
cleaning and maintenance. These distinctive advantages allow
pneumatic-driven units to be integrated in a wide range of in-
dustrial actuators. Therefore, the problems of exact control of
this kind of actuators are necessary. However, many hindrances
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in model analyzing and controlling are found such as the com-
prehensibility of air and adverse effects of driving pneumatic
components in high speed that are oscillatory behaviours and
parasitic moving frictions [1].
The past decades also witnessed the profound automation in
many industries by the popularity of manipulators. Indeed, the
use of industrial manipulators improves the overall productivity
and reduces human error, as they have a superior load-lifting
capability and can replace human labor in dangerous environ-
ments. They perform procedures repeatedly with high precision
and are widely used from welding robots to car assembly lines.
Generally, manipulator joints are driven in different modes,
i.e., full-actuated [2] and under-actuated [3]. It is more chal-
lenging to do the under-actuated ones, since both kinematic
and dynamic constraints are tied in an under-actuated motion
system. Therefore, it is inappropriate to apply directly con-
ventional Euler–Lagrange method to this kind of joints. Thus,
complexity [4] and uncertainty of the model also degrade the
controller robustness. One typical model of a manipulator is
from [5, 6]. It is a 2-DOF robotic manipulator is comprised of
an upper arm, a forearm, a disc load, and a fixed torso. The
shoulder and elbow joints are driven to rotate by two Electro-
hydraulic actuators (EHAs). In this paper, we propose a model
using EPSS with additional electro-pneumatic servo actuator
at the end of the forearm, which governs the extension of the
forearm and makes our model 3-DOF, providing a better range
of work and applications. The 3D model of this manipulator is
illustrated in Figure 1.
Due to the enormous applicability of pneumatic units in in-
dustries, researchers have come up with different strategies to
control accurately this type of actuator [7]. An active rejection-
disturbance controller (ARDC) was utilized in [8] and [9] and
brought promising results. Pulse-width modulation technique
and fuzzy logic controller were combined in [10] to control
an electro-pneumatic servo systems. In [11], Karpenko et al.
proposed a quantitative feedback theory of a PI controller for
positioning of a servo-pneumatic servo actuator. Paper [12]
presented a hybrid controller of fuzzy controller and PID con-
troller. These linear control schemes experienced difficulties
in obtaining both fast response and precise position control at
the same time, due to the nonlinear nature of the EPSS.
Therefore, different approaches are implemented to tackle this
problem. Popular employed methods can be listed as backstep-
ping technique and Sliding Mode Control (SMC). Tracking
position control of EPSS is concerned in [13] with a backstep-
ping controller. In [14], authors applied adaptive backstepping
controller using Nussbaum gain with unknown model. A differ-
ent approach of adaptive backstepping control is implemented
in [15]. For SMC, it showed a wider range of application in
a lot of control scenarios: SMC for servo-pneumatic servo
system [16] and [17], SMC with friction compensation [18],
SMC with Particle Swarm Optimization [19], and adaptive
SMC [20]. These papers proved the robustness and efficiency
of SMC for a highly non-linear model like pneumatic system.
Some authors also combined these techniques together and ob-
tained even remarkably better control quality like Ren et al. [21]
and Lu et al. [22]. SMC algorithms in these mentioned papers
were found to be effective against external disturbances with
addition of an observer like extended state observer (ESO).
In this paper, a new control approach using Backstepping-
Sliding Mode Control (BSMC) and nonlinear high-gain dis-

turbance observer is presented to the 3-DOF pneumatic-driven
manipulator. BSMC is used in control the dynamics of the
EPAs and the kinematics of the entire manipulator itself. The
manipulator model under the effect of external disturbances
are also considered. The novel contributions of this paper are
summarized as follows:
(i). The 3-DOF robotic arm driven by EPSS including shoul-
der, elbow, and translational joint is built, in which the 3-DOF
manipulator is designed in CAD and a 3D model with precise
parameters of the model is built in Solidworks and Simscape
Multibody to validate the model in 3D simulation.
(ii). The nonlinear high-gain disturbance observer is embed-
ded with BSMC to have robust property against external dis-
turbances affecting on the manipulator. The stability of the
controller is proved mathematically by Lyapunov stability the-
ory. The performance of the BSMC with nonlinear high-gain
disturbance observer is compared to the conventional BSMC
using saturation function.
The reminder of this article is organized as follows: the Section
1 is introduction, and the Section 2 concerns about mathemat-
ical model of the manipulator. SMC with nonliear high-gain
DOB is proposed in Section 3, followed by the simulation eval-
uation in Section 4. Finally, Section 5 discusses the simulation
results and future development.

2. Mathematical modeling of the 3-DOF PRA

2.1. Dynamic and kinematic model of robotic arm

Figure 1: The 3-DOF pneumatic robotic arm configuration.

The 3-DOF pneumatic robotic arm is shown in Figure 1, in
which the shoulder, elbow, and translational joints are driven
by three independent single-rod cylinder electro-pneumatic
servo actuators. The robot position vectors Pm1,Pm2, and P3 are
given by, respectively:

rPm1/O =

[
−P1Pm1 sin(θ1 + εm1)
P1Pm1 cos(θ1 + εm1)

]
(1)

rPm2/O =

[
−P1P2 sin(θ1)−P2P2m sin(θ1 +θ2)
P1P2 cos(θ1)+P2P2m cos(θ1 +θ2)

]
(2)
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rP3 =

[
−P1P2 sin(θ1)− z3 sin(θ1 +θ2)
P1P2 cos(θ1)+ z3 cos(θ1 +θ2)

]
(3)

It is straightforward to determine the velocity vectors Pm1,Pm2,
and P3 as follows:

vPm1/O =

[
−P1Pm1θ̇1C(θ1 + εm1)
−P1Pm1θ̇1S(θ1 + εm1)

]
(4)

vPm2/O =

[
−P1P2θ̇1C(θ1)−P2P2m

(
θ̇1 + θ̇2

)
C(θ1 +θ2)

−P1P2θ̇1S(θ1)−P2P2m
(
θ̇1 + θ̇2

)
S(θ1 +θ2)

]
(5)

vP3 =[
P1P2θ̇1C(θ1)− z3

(
θ̇1 + θ̇2

)
C(θ1 +θ2)−ż3S(θ1 +θ2)

−P1P2θ̇1S(θ1)− z3
(
θ̇1 + θ̇2

)
C(θ1 +θ2)+ ż3C(θ1 +θ2)

]
(6)

where S(·) and C(·) denote sin(·) and cos(·), respectively.
From the system representation, the total kinetic energy K of
the 3-DOF PRA including the cylinders and the load mass is
computed as follows:

K = K1 +K2

=
1
2

m1
(
P1Pm1θ̇1

)2
+

1
2

I1θ̇
2
1 +

1
2

m2vPm2/O
T vPm2/O

+
1
2

I2 f
(
θ̇1 + θ̇2

)2
+

1
2

m f vm f
T vm f

(7)

where K1 and K2 denote the kinetic energy of the the upper arm
and the forearm, respectively. Similarly, the total gravitational
potential energy of the 3-DOF PRA including the cylinders
and the load mass is computed by:

U =U1 +U2 +U f

= m1gP1Pm1 cos(θ1 + εm1)

+m2g(P1P2 cos(θ1)+P2P2m cos(θ1 +θ2))

+m f g(P1P2 cos(θ1)+ z3 cos(θ1 +θ2))

(8)

where U1,U2, and U f are the gravitational potential energy
of the upper arm, the forearm, and the translational joint. g
denotes the gravitational acceleration. Then, the total energy E
of the three-link robotic arm system is given by:

E = K1 +K2 −U1 −U2 −U f (9)

By using simple geometric calculations, three cylinder dynamic
lengths c1,c2,c3 are represented by:

c1 =

√
a12 +b1

2 −2a1b1 cos
(

π

2
−θ1 + ε11

)
c2 =

√
a22 +b2

2 −2a2b2 cos(π −θ2 − ε21)

c3 = x3

(10)

Define the generalized force vectors T including torques T1, T2
and force F3 as:

T = [T1 T2 T3]
T (11)

where T1 = F1L1, T2 = F2L2, T3 = F3; L1,L2 are the two dy-
namic force arms, given as:

L1 = a1 sin
(

arccos
(

a1
2 + c1

2 −b1
2

2a1c1

))
L2 = a2 sin

(
arccos

(
a2

2 + c2
2 −b2

2

2a2c2

)) (12)

Choosing the generalized coordinates vector q:

q = [θ1 θ2 z3]
T (13)

The Lagrange equation of the three-DOF robotic arm system
is computed as:

T =
∂

∂ t
∂E
∂ q̇

− ∂E
∂q

(14)

Applying the Lagrange equation, then the kinetic equation of
the three-link robotic arm system is obtained as follows:

M(q, q̇) q̈+C(q, q̇) q̇+G = T (15)

where

M(q, q̇) =

 M11 M12 M13
M21 M22 M23
M31 M32 M33



C(q, q̇) =

 C11 C12 C13
C21 C22 C23
C31 C32 C33


G =

 G1
G2
G3


M11 = I1 + I2 +m1P1P1m

2 +m2P2Pm20
2 +m f x2

3

+m2P1P2
2 +m f P1P2

2 +2m2P1P2.P2Pm20 cosθ2

+2m f P1P2.x3 cosθ2

M12 = M21

= I2 +m2P2Pm20
2 +m f x2

3 +m2P1P2.P2Pm20 cosθ2

+m f P1P2.x3 cosθ2

M13 = M31
= m f P1P2 sinθ2

M22 = I2 +m2P2Pm20
2 +m f x2

3

M23 = M32 = 0
M33 = m f

C11 = 0

C12 = m1P1P2.ẋ3 cosθ2 −2m2P1P2.P2Pm20θ̇1 sinθ2

−m2P1P2.P2Pm20θ̇2 sinθ2 −2m f P1P2.x3θ̇1 sinθ2

−m f P1P2.x3θ̇2 sinθ2

C13 = 2m f x3θ̇1 +2m f x3θ̇2 +2m f P1P2.θ̇1 cosθ2

C21 = 0

C22 =−m2P1P2.P2Pm20θ̇1 sinθ2 −m f P1P2.x3θ̇1 sinθ2

C23 = 2m f x3θ̇1 +2m f x3θ̇2 +m f P1P2θ̇1 cosθ2

C31 = 0

C32 = m f P1P2θ̇1 cosθ2

C33 = 0
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Figure 2: The quasi-physical model of the 3DOF-PRA based on Simscape Multibody.

G1 =−m1gP1Pm1 sin(θ1 + ε11)

+m2g(P1P2 sin(θ1 + ε11)+P2Pm2 sin(θ1 +θ2))

−m f g(P1P2 sin(θ1 + ε11)+ x3 sin(θ1 +θ2))

G2 = m2g.P2Pm2 sin(θ1 +θ2)−m f gx3 sin(θ1 +θ2)

G3 = m f gcos(θ1 +θ2)

The matrix M(q, q̇) is positive definite and symmetric for all
q. Define state variables for the robotic arm x1 = q , then
Equation (15) can be rewritten as follows:{

ẋ1 = x2
ẋ2 = M−1 (T−Cx2 −G)

(16)

Let g2 (q) = M−1 and f2 (q) =−M−1 (Cx2 +G), Equation
(16) is obtained:{

ẋ1 = x2
ẋ2 = f2 (q)+g2 (q)T (17)

2.2. Inverse kinematic model of 3-DOF robotic arm

The goal of the 3-DOF robotic arm system is to control the
position of the robot’s final action. In order to obtain this,
from the position of the last action, the value of 2 rotation
angles θ1,θ2 and the displacement z3 of three robotic joints are
designed as follows.
The position vector of the robot’s last action is defined as:

P =
[

px py
]T (18)

Then from Figure 1, it can be shown that :

p2
x + p2

y = P1P2
2 + z2

3 +2P1P2z3 cos(θ2) , (19)

cos(θ2) =
p2

x + p2
y −P1P2

2 − z2
3

2P1P2z3
. (20)

The rotation angles θ1 and θ2 of the robotic arm are calculated
as follows:{

θ1 = ATAN2(py, px)−ATAN2(z3 sinθ2,P1P2 + z3 cosθ2)
θ2 = ATAN2(sinθ2,cosθ2) .

(21)

2.3. Dynamic model of the EPSS

The quasi-physical model of the 3DOF-PRA based on Sim-
scape Multibody is shown in Fig. 2. The force acting on each
robot joint is driven by the pneumatic cylinder actuator. The
pneumatic cylinders used to drive the three joints of the robot
are assumed to have exactly the same physical structure, thus
the dynamic model of cylinders are represented in general as
shown in Figure 3.

Figure 3: Schematic of the pneumatic cylinder.

The length of the cylinder c is calculated by:

c = 3L/2+ xp (22)

where xp is the piston position, L denotes the piston stroke. The
force of the piston, which is caused by the pressure difference
between two chambers of the cylinder, is given by:

Fa = P1A1 −P2A2 −Patm(A1 −A2) (23)

where A1 and A2 denote the piston effective areas. Patm, P1,
and P2 are the absolute pressures of the ambience, the actua-
tor chamber 1, and the chamber 2, respectively. The control
valve in the EPSS is a 5/3-way proportional valve, thus the
relationship between the control signals Av,i(i = 1,2) is:

Av,1 =−Av,2 = Av (24)

Mass flows entering and leaving of the two cylinder chambers
are expressed by:

µ̇i (Pu,Pd) = Avψi (Pu,Pd)

= Av


CdPuC1√

T
, Pd

Pu
≤ Pcr

CdPuC1√
T

√
1−
( Pd

Pu −Pcr

1−Pcr

)2

, Pd
Pu

> Pcr

(25)
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where

C1 =

√
γ

R

(
2

γ +1

)(γ+1)(γ−1)
(26)

Ψ1 =

{
Ψ(Ps,P1) , i f Av ≥ 0

Ψ(P1,Patm) , i f Av < 0 (27)

Ψ2 =

{
Ψ(P2,Patm) , i f Av ≥ 0

Ψ(Ps,P2) , i f Av < 0 (28)

Pu, Pd , and Ps are the upstream pressure, the downstream pres-
sure, and the supply pressure, T is the upstream temperature
of air, Pcr is the critical pressure ratio, γ is the ratio of specific
heats, Cd is the discharge coefficient, R is the gas constant. The
pressure dynamics of the cylinder can be given as:

Ṗ1 =
γRT
V1

µ̇1 −α
γP1A1

V1
ẋp (29)

Ṗ2 =
γRT
V2

µ̇2 +α
γP2A2

V2
ẋp (30)

The volumes of two cylinder chamber can be calculated by:

V1 =V01 +A1

(
L
2
+ xp

)
V2 =V02 +A2

(
L
2
+ xp

) (31)

Control valve servo input u is given by:

Av = wkvu (32)

where w denotes valve orifice area gradient, kv is valve spool
position gain. From Equation (22) to (32), the force dynamics
of the pneumatic piston is obtained as follows:

Ḟa =−αγ ẋp

(
P1A2

1
V1

− P2A2
2

V2

)
+ γRT

(
A1ψ1

V1
− A2ψ2

V2

)
wkvu

(33)

Let

x =
[

xp ẋp
]T (34)

Then, Equation (33) can be rewritten as:

Ḟa = fa (x, t)+ga (x, t)u (35)

where

fa (x, t) =−αγ ẋp

(
P1A2

1
V1

− P2A2
2

V2

)
ga (x, t) = γRT

(
A1ψ1

V1
− A2ψ2

V2

)
wkv

(36)

In this paper, we assume that all the EPSS are identical.

3. Proposed approach

3.1. Nonlinear high-gain disturbance observer

Parameter uncertainties and unknown disturbances are always
present in the 3-DOF robotic arm system. Thus, to obtain high-
precision control, the model of the robot (17) is added with the
disturbances d(q) as:{

ẋ1 = x2
ẋ2 = f2 (q)+g2 (q)T+d(q) . (37)

where d(q) denotes the disturbances of the robot model in-
cluding the model uncertainties f̄2(q), ḡ2(q) and external dis-
turbances D, yielding:

d(q) = f̄2(q)+ ḡ2(q)T+D

Assumption 1. The state variables q of the 3-DOF robotic arm
driven by EPSS are physically bounded i.e. |q|< qmax, where
qmax is constant. The unknown disturbance vector d varies
slowly and is bounded, the disturbances satisfy:

|ḋ| ≤ dmax (38)

where dmax are the constraint constants. Define the estimated
disturbance d̂, then estimated error is given by:

d̃ =
[
d̃1 d̃2 d̃3

]T
= d− d̂ (39)

Dynamic equation of estimated disturbance is determined as
[24]:

˙̂d =
1
ε

(
ẋ2 − f2 (q)−g2 (q)T− d̂(q)

)
(40)

The estimation error dynamics of the disturbance observer is
obtained as follows [25]:

˙̃d = ḋ− 1
ε

d̃ (41)

Then,∣∣d̃∣∣≤ e−(1/ε)t ∣∣d̃(0)∣∣+ ερ (t) (42)

where ρ (t) denotes an envelope function that ρ (t)≥
∣∣ḋ∣∣

Remark 1. Equation (42) shows that the estimated error d̃ of
the nonlinear high-gain disturbance observer can made arbitrar-
ily small when the observer gain ε is chosen as infinitesimal.

3.2. Robust control design process

In the paper, the complete system including the robot and the
EPSS is rendered as a cascade system. Firstly, the system
level is taken into account to identify required torque/force to
achieve positioning tasks. Subsequently, the control design
is carried out at pneumatic actuator level to construct the
final control signal. In this step, the nonlinear high-gain
disturbance observer is designed to effectively estimate
external disturbances acting on the system.

a. The 3-DOF robotic arm control
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The conventional backstepping technique is integrated with the
sliding mode control to obtain a robust controller for uncer-
tain systems. The basic BSMC for the 3-DOF robotic arm is
designed by firstly defining the tracking error as:

e1 = x1 −x1d (43)

where x1d denotes the desired trajectory. Select Lyapunov can-
didate function V1 as:

V1 =
1
2

eT
1 e1 (44)

The time derivative of Equation (44) is taken as follows:

V̇1 = eT
1 ė1 = eT

1 (ẋ2 − ẋ1d) (45)

Equation (45) suggests that the virtual control law is chosen
as:

x2d =−c1e1 + ẋ1d (46)

where c1 = diag(c11,c12,c13) is a positive definite matrix, then,
V̇1 ≤ 0. Define a sliding variable s = [s1 s2 s3]

T :

s = x2 −x2d (47)

Subsequently, Lyapunov candidate function V2 is defined as
follows:

V2 =V1 +
1
2

sTs (48)

The time derivative of equation (48) is taken as

V̇2 = V̇1 + sTṡ

=−c1eT
1 e1 + s(f2 (q)+g2 (q)T+d(q)− ẋ2d)

(49)

Equation (49) directly indicate that control law T of the 3-DOF
robotic arm is designed as:

Td = g2
−1 (q)(−f2 (q)− c2s+ ẋ2d −υsgn(s)) (50)

where c2 = diag(c21,c22,c23) and υ = diag(υ1,υ2,υ3) are
positive definite matrices. Using the estimated disturbance
signal (40), Equation (50) is rewritten as follows:

Td = g2
−1 (q)

(
−f2 (q)− c2s+ ẋ2d −υsgn(s)− d̂(q)

)
(51)

The control design for the robot level is completed, in the next
section, the control action for the EPSS is established.

b. The electro-pneumatic servo system control
The dynamic model of one cylinder is described in detail in
subsection 2.3. To calculate the control for the three-cylinder of
the robot system, then the equation (35) is rewritten as follows:

Ḟa = fa +gau (52)

where Fa =
[

Fa,1 Fa,2 Fa,3
]T , fa =[

fa,1 (x, t) fa,2 (x, t) fa,3 (x, t)
]T , u =

[
u1 u2 u3

]T ,
and ga = diag(ga,1 (x, t),ga,2 (x, t),ga,3 (x, t)), the subscript
n = [1,2,3] represent the cylinders of the three joints (i.e,
shoulder, elbow, and translation joint), respectively.
In order to reduce the influence of parameter uncertainties

of the EPSS, sliding mode control is used for the electro-
pneumatic servo control system. Define sliding variable sa as
follows:

sa = Fa −Fd (53)

where Fd denotes the desired force that determined from the
control laws Td via the generalized force vectors (11) and
the two dynamic force arms (12). Select Lyapunov candidate
function V3 as:

V3 =
1
2

sT
a sa (54)

The time derivative of equation (54) is taken as:

V̇3 = sa
Tṡa = sa

(
fa +gau− Ḟd

)
(55)

Based on sliding mode control, the control law u of electro-
pneumatic servo system is designed as follows:

u = ga
−1 (−fa −ksa + Ḟd −κsgn(sa)

)
(56)

where k= diag(k1,k2,k3) and κ = diag(κ1,κ2,κ3) are positive
definite matrices.

3.3. Stability analysis

Theorem 1. Consider the 3-DOF robotic arm driven by
electro-pneumatic servo systems described in general form as
equations (17) and (35) under unknown disturbance bounded
as Assumption 1, the control laws of the robotic arm (51),
the control laws of the EPSS (56), and the observer gains
ε of the nonlinear disturbance observer (40) guarantee the
Input-to-State Stability [23] of the control system.

Proof of Theorem 1. Lyapunov function candidate is defined
as:

V =
1
2

eT
1 e1 +

1
2

sTs+
1
2

d̃Td̃+
1
2

sT
a sa (57)

The time derivative of V is taken as:

V̇ = e1
Tė1 + d̃T ˙̃d+ sTṡ+ sa

Tṡa (58)

Substituting the control laws (51), (56) and the estimation error
dynamic (41) into Equation (58), it can be rewritten as:

V̇ =−eT
1 c1e1 + sT (−c2s−υsgn(s)+d− d̂

)
+d̃T

(
ḋ− 1

ε
d̃
)
+ sa

T (−ksa −κsgn(sa))
(59)

The inequality |a||b|⩾ ab is used for Equation (59), thus we
obtain:

V̇ ≤−eT
1 c1e1 − sT

a ksa − c2i

(
si

ζi
− ζi

2c2i
d̃i

)2

−τi

(
|d̃i|−

1
2τi

|ḋi|
)2

−

(
1− 1

ζi
2

)
c2isi

2 − ηi
2

4c2i
d̃i

2

+

(
1

4τi
|ḋi|

2
) (60)

where

τi =

(
1
ε
− ζi

2 +ηi
2

4c2i

)
; ζ > 1; η ̸= 0; i = 1,2,3 (61)
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Figure 4: The EPSS actuated 3-DOF robot control structure.

There exists constants ι and γ satisfying the following condi-
tions:

ι =
3
∑

i=1

(
1

4τi
|ḋi|

2
)
,

γ = min
{(

1− 1
ζi

2

)
c2i, ci, ki,

ηi
2

4c2i

} (62)

Equation (62) can be rewritten as:

V̇ ⩽−2γV + ι (63)

Consequently, it can be concluded that

V (t)⩽V (0)e−2γt +
ι

2γ

(
1− e−2γt) (64)

Remark 2. Equation (64) implies that the tracking errors e1, s,
sa, and estimation error d̃ of the 3-DOF robotic arm driven
by electro-pneumatic servo systems using the backstepping-
sliding mode control with nonlinear high-gain disturbance ob-
server exponentially converge to an arbitrarily tiny ball.
Remark 3. In order to reduce the chattering effect of sliding
mode control, the saturation function is used to replace the sign
function in the control laws (51), (56).

4. Simulation evaluation

Simulations based on Matlab/Simscape Multibody Link plug-
in on Solidworks are carried out to demonstrate the control
validity of the 3-DOF robotic arm driven by electro-pneumatic
servo systems. In which, the electro-pneumatic servo systems
are controlled by sliding mode control, and backstepping-
sliding mode control with nonlinear high-gain disturbance
observer is used for the 3-DOF robotic arm that are shown
as in Figure 4. In the simulations, assume that disturbances
acting on robot joints is sinusoidal wave form of 0.5sinπt as
shown in Figure 11. Parameters of the 3-DOF robotic arm and
the proposed controller is expressed in Table 1.

From figures 5, 6, and 7, we can observe that angular and
translational motions of the robot under the proposed con-
troller integrated with the disturbaces observer exhibit better
performances compared to traditional backstepping-sliding
mode control. Figures 8, 9, and 10 show that forces produced
by the EPSS closely (,i.e. the actual forces) track the desired
forces determined by the robot motion control problem. It is
also noted that the control forces are well maintained in ap-
plicable ranges. The effectiveness of the disturbance observer

Table 1: Parameters of the 3-DOF robotic arm and the proposed
controller

Symbol Value Unit

m1 1.335 kg
m2 0.86 kg
m f 1 kg
I1 0.05628 kg ·m2

I2 0.21154 kg ·m2

P1P2 0.3 m
P1Pm1 0.1523 m
P2Pm2 0.165 m
L 0.2 m
Patm 0.1×106 Pa
Ps 0.6×106 Pa
Pcr 0.528
γ 1.4
R 287 N ·m/kg ·K
T 300 K
c1 = diag(c11,c12,c13) diag(2.5,2,4)
c2 = diag(c21,c22,c23) diag(5,7,13)
υ = diag(υ1,υ2,υ3) diag(1,2,1)
ε 0.015

Figure 5: Shoulder joint rotation angle.

is presented in Figure 11, in which the disturbance estima-
tion of the three joints (i.e, shoulder, elbow, and translational
joint) follows the disturbances of 3-DOF robotic arm. By us-
ing the nonlinear high-gain disturbance observer combined
with backstepping-sliding mode control, the rotation angle re-
sponses of the shoulder and elbow joints, and translational
joint displacement are greatly improved that reducing the in-
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Figure 6: Elbow joint rotation angle.

Figure 7: Translational joint displacement.

Figure 8: Force response of the pneumatic cylinder F1.

Figure 9: Force response of the pneumatic cylinder F2.

fluence of the disturbance of the three joints compared to the
conventional backstepping-sliding mode control.

Figure 10: Force response of the pneumatic cylinder F3.

Figure 11: Estimated disturbance responses of robot joints.

5. Conclusion

In the paper, the backstepping-sliding mode control with em-
bedded disturbance is developed for the 3-DOF robot driven by
electro-pneumatic actuators. The complicated dynamics of the
electro-pneumatic characteristic is considered in the control
design. By backstepping-like procedure the control scheme
is formulated exhibiting robust property against disturbances.
The constructed control allows the system output track the de-
sired signal in a short time period with negligible steady state
errors. Currently, the simulation is studied in the paper. In the
near future, the experimental results will be presented.

Acknowledgement

Van Trong Dang was funded by Vingroup JSC and supported
by the Master, PhD Scholarship Programme of Vingroup In-
novation Foundation (VINIF), Institute of Big Data, code
VINIF.2021.ThS.26.

References

[1] Kawakami, Y., Moguchi, H., & Kawai, S. (1990) Some considerations
on the high-speed driving of pneumatic cylinders. J. Japan Hydraulics
& Pneumatics Society, 21(3 May), 318–327.

[2] Zhijun Li, Shuzhi Sam Ge, Adams, M., & Wijesoma, W. S. (2008)
Adaptive Robust Output-Feedback Motion/Force Control of Electrically
Driven Nonholonomic Mobile Manipulators. IEEE Transactions on
Control Systems Technology, 16(6), 1308-1315.

[3] Dong, W. (2002) On trajectory and force tracking control of constrained
mobile manipulators with parameter uncertainty. Automatica, 38(9),
1475–1484.

[4] Yan, Y., Xu, J., & Wiercigroch, M. (2017) Basins of attraction of the
bistable region of time-delayed cutting dynamics. Physical Review E,
96(3).

[5] Guo, Q., Zhang, Y., Celler, B. G., & Su, S. W. (2019) Neural Adap-
tive Backstepping Control of a Robotic Manipulator with Prescribed
Performance Constraint. IEEE Transactions on Neural Networks and
Learning Systems, 30(12), 3572–3583.



Measurement, control and automation 59

[6] Guo, Q. & Jiang, D. Nonlinear Control Techniques for Electro-
Hydraulic Actuators in Robotics Engineering. (CRC Press,2017)

[7] Ali, H., Bahari, S., Noor, M.S., Bashi, S.M., & Marhaban, M.H. (2009)
A Review of Pneumatic Actuators (Modeling and Control). Australian
Journal of Basic and Applied Sciences, 3 ,pp. 440 - 454.

[8] Wang, Y.-B & Bao, G. & Wang, Z.-W. (2007) Application of auto-
disturbance rejection controller for pneumatic servo system. Journal of
Dalian Maritime University, Vol 33.

[9] Zhao, L., Zhang, B., Yang, H., & Li, Q. (2017) Optimized linear active
disturbance rejection control for pneumatic servo systems via least
squares support vector machine. Neurocomputing, 242, 178–186.

[10] Najjari, B., Barakati, S. M., Mohammadi, A., Futohi, M. J., & Bostanian,
M. (2014) Position control of an electro-pneumatic system based on
PWM technique and FLC. ISA Transactions, 53(2), 647–657.

[11] Karpenko, M., & Sepehri, N. (2004) QFT design of a PI controller
with dynamic pressure feedback for positioning a pneumatic actuator.
Proceedings of the 2004 American Control Conference.

[12] Parnichkun, M., & Ngaecharoenkul, C. (2001) Kinematics control
of a pneumatic system by hybrid fuzzy PID. Mechatronics, 11(8),
1001–1023.

[13] Smaoui, M., Brun, X., & Thomasset, D. (2006) A study on tracking
position control of an electropneumatic system using backstepping
design. Control Engineering Practice, 14(8), 923–933.

[14] Ren, H.-P., Wang, X., Fan, J.-T., & Kaynak, O. (2019) Adaptive Back-
stepping Control of a Pneumatic System With Unknown Model Parame-
ters and Control Direction. IEEE Access, 7, 64471–64482.

[15] Ren, H.-P., & Huang, C. (2013)) Adaptive backstepping control of pneu-
matic servo system. 2013 IEEE International Symposium on Industrial
Electronics.

[16] Carneiro, J. F., & de Almeida, F. G. (2014) Accurate motion control
of a servopneumatic system using integral sliding mode control. The
International Journal of Advanced Manufacturing Technology, 77(9-
12), 1533–1548.
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