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Abstract 
 
Gantry cranes are widely used in various fields such as industry and transportation. However, the crane generates unwanted payload vibration 

during operation, causing operation and safety at work difficulties. Especially with double-pendulum cranes, this is even more serious. This 

paper proposed the ADRC and Input Shaping combination controller to control trolley position and suppress payload vibration. The Equal 

Shaping-Time and Magnitude (ETMn) is presented and compared to the traditional Input Shaping method. Simulation results show the 

effectiveness of the proposed method. 
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Symbols 

Symbols Units Description 

A, B, C, L  state-space matrix 

G(s)  transfer function  

𝜔𝑛 , 𝜔𝑑 

𝜁 

𝜃1, 𝜃2 

x 

rad/s 

 

rad 

m 

natural frequency 

damping ratio 

sway angle 

trolley position 

Abbreviations 

ADRC Active Disturbance Rejection Control 

IS 

ZV 

ZVD 

ZVDD 

ETMn 

Input Shaping 

Zero Variation 

Zero Variation & Derivative 

Zero Variation Derivative & Derivative 

Equal Shaping-Time and Magnitude 

  

 

Tóm tắt 
 

Cầu trục được sử dụng rộng rãi trong nhiều lĩnh vực khác nhau như 

công nghiệp và giao thông vận tải. Tuy nhiên, trong quá trình hoạt 

động, cầu trục phát sinh rung động không mong muốn của tải trọng, 

gây khó khăn trong vận hành và an toàn khi làm việc. Đặc biệt với 

cầu trục con lắc đôi thì điều này càng khó khăn hơn. Bài báo này đã 

đề xuất bộ điều khiển kết hợp ADRC và Input Shaping trong việc 

điều khiển vị trí của tải trọng và hạn chế rung động của tải trọng. 

Phương pháp tạo dạng với thời gian định hình và biên độ bằng nhau 

(ETMn) được trình bày để so sánh với phương pháp tạo dạng đầu 

vào truyền thống. Các kết quả mô phỏng cho thấy hiệu quả của 

phương pháp đề xuất. 

1. Introduction 

There are many control methods to suppress vibration and 

control the crane position in recent years, especially for 

double pendulum cranes where their mathematical model is 

close to reality. In many cases, the crane system will exhibit a 

secondary swing characteristic that the load will swing around 

the hook since, for example, the mass of the hook cannot be 

ignored. Therefore, the existing control methods for single-

pendulum cranes may not perform well when directly applied 

to the double-pendulum overhead crane system. As same as 

other control objects, in general, there are two main control 

directions: closed-loop control and open-loop control. With 

closed-loop control approaches, various control strategies 

have been applied to double pendulum cranes from linear 

based controls, such as tuned PID [1], decoupling linear with 

S curve trajectory [2], nonlinear quasi-PID [3], coupling PD 

with sliding mode control [4], to nonlinear controls [5], 

sliding mode control [6], Fuzzy control [7], optimal control 

[8], adaptive control [9], input-output inversion [10], etc. It is 

known that the closed-loop controllers require several sensors 

for measuring the hook and payload oscillation angles. These 

make it difficult for the closed-loop controls to be 

implemented in practice.  

In opposition to closed-loop control, open-loop or 

feedforward control has been widely applied for vibration 

suppression control of double pendulum cranes. Multi-mode 

input preshaping technique has been effectively used for 

vibration suppression control of double pendulum cranes [11, 

12, 13]. In addition, waveform command shaper [14, 15], 

smoother [16, 17, 18], and reference command shaping [19] 

have been applied to control double pendulum cranes. The 

open-loop control approaches use the know vibration 

information, such as vibration frequency and damping factor, 
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to design the input filter to suppress the unwanted vibration. 

These methods are simple but effective in suppressing the 

payload vibration and can be implemented easily since they 

do not require vibration sensors. 

The above feedforward control approaches are often 

combined with a closed-loop position controller for crane 

trolleys. Most of the cart position control is PID controller 

because of its simplicity, effectiveness, and applicability in 

practice. However, the stability and the performance of PID 

control may degrade when the system encounters interference 

from the environment or parameter uncertainties.  

To further improve the system’s performance while keeping 

the simplicity of the feedforward control system for crane 

control, in this paper, the Active Disturbance Rejection 

Control (ADRC) [20] is applied to control the trolley position 

instead of using PID control. With powerful disturbance 

rejecting ability and simplicity in design, ADRC is expected 

to replace traditional PID controller. Furthermore, the multi-

mode input shaping (IS) is considered as a feedforward 

controller. Difference from other research that uses 

conventional input shapers such as Zero Vibration (ZV) and 

Zero Vibration Derivative (ZVD) shapers [21], this paper 

applies the Equal Shaping-Time and Magnitude (ETMn) 

shaper method [22], which is more robust than the traditional 

IS method without increasing the shaping time.  

The rest of the paper is organized as follows. The 

mathematical model of the double pendulum crane is 

presented in section 2. In section 3, the design of ADRC 

control for the trolley is shown. In section 4, the traditional 

and ETMn input shaping is described. The combination of 

ADRC and the input shapers are presented in section 5. 

Conclusion and further studies are described in section 6.  

2. Double Pendulum Crane Model 

The double-pendulum crane system is illustrated in Figure 1, 

where 𝑥  is the horizontal position of the trolley, 𝑚  is the 

trolley mass, 𝑚1 is the hook mass, 𝑚2 is the payload mass, 𝑙1 

is the cable length between trolley and hook, 𝑙2 is the cable 

length between hook and payload, 𝜃1 is the 1st sway angle and 

𝜃2 is the 2nd sway angle. In this paper, for simplicity, all of the 

trolley, hook, and payload are considered as point masses, and 

the friction force between the trolley and the rail is neglected. 

The dynamic model of the double pendulum crane is 

described by (1), (2), and (3) [23, 28]. 

 
Figure 1: Schematic of two-dimensional double-pendulum crane [23] 

 

{

(𝑚 +𝑚1 +𝑚2)𝑥̈ + (𝑚1 +𝑚2)𝑙1(𝑐𝑜𝑠𝜃1𝜃̈1 − 𝜃1̇
2
𝑠𝑖𝑛𝜃1) + 𝑚2𝑙2(𝑐𝑜𝑠𝜃2𝜃̈2 − 𝑠𝑖𝑛𝜃2𝜃̇2

2
) = 𝐹                                              (1)

(𝑚1 +𝑚2)𝑙1𝑐𝑜𝑠𝜃1𝑥̈ + (𝑚1 +𝑚2)𝑙1
2𝜃̈1 +𝑚2𝑙1𝑙2[cos(𝜃1 − 𝜃2) 𝜃̈2 + sin(𝜃1 − 𝜃2)𝜃̇2

2
] + (𝑚1 +𝑚2)𝑔𝑙1𝑠𝑖𝑛𝜃1 = 0   (2)

𝑐𝑜𝑠𝜃2𝑥̈ + 𝑙1 cos(𝜃1 − 𝜃2) 𝜃1̈ + 𝑙2𝜃2̈ − 𝑙1𝑠𝑖𝑛(𝜃1 − 𝜃2)𝜃̇1
2
+ 𝑔𝑠𝑖𝑛𝜃2 = 0                                                                                  (3)

 

 

Assuming that the cable lengths do not change during the 

motion, the linearized equations of motion for this system 

(around a stable equilibrium point 𝜃1 = 𝜃2 = 0   are as 

follows [21]: 

𝜃̈1(𝑡) = −(
𝑔

𝑙1
) 𝜃1 + (

𝑔𝑅

𝑙1
)𝜃2 −

𝑢(𝑡)

𝑙1
 

(4) 

𝜃̈2(𝑡) = (
𝑔

𝑙1
) 𝜃1 − (

𝑔

𝑙2
+
𝑔𝑅

𝑙2
+
𝑔𝑅

𝑙1
) 𝜃2 −

𝑢(𝑡)

𝑙1
 

where 𝑅 =
𝑚2

𝑚1
 is the ratio of the payload mass to the hook 

mass, g is the gravitational acceleration, and 𝑢(𝑡)  is the 

acceleration of the trolley. 

 The two linearized frequencies of the double-

pendulum are [23]: 

𝜔1 = √
𝑔

2
(𝛼 − √𝛽)        (5) 

𝜔2 = √
𝑔

2
(𝛼 + √𝛽)        (6) 

where 

𝛼 =
𝑚1 +𝑚2

𝑚1

(
1

𝑙1
+
1

𝑙2
) 

𝛽 = (
𝑚1 +𝑚2

𝑚1

)
2

(
1

𝑙1
+
1

𝑙2
)
2

− 4 (
𝑚1 +𝑚2

𝑚1

)
1

𝑙1𝑙2
 

The payload vibration of a double pendulum crane is the 

combination of two single-frequency vibrations. Thus, to 

suppress the payload vibration using the feedforward control 

approach, multi-mode input shaping is considered in this 

paper. In addition, we will apply the ADRC controller for the 

trolley position controller instead of PID controller. The 

complete control system for the double pendulum crane is a 

combination of ADRC and multi-mode input shaping.       

3. Control System Design 

3.1. Position control of the trolley 

3.1.1. ADRC concept 

The concept of ADRC was initially proposed by J.Han [20]. 

In this paper, the work is focused on the second-order ADRC 

as follows: 

 𝑦̈(𝑡) = 𝑓(𝑡) + 𝑏0. 𝑢(𝑡)                                                  (7)  

where 𝑢 is the control signal, 𝑦 is the output response, and 𝑓 

is a generalized disturbance (including input disturbance and 

parameter uncertainty). According to Han, the generalized 

term 𝑓 is insignificant, while only its real-time estimates 𝑓 is 

important. Therefore, an Extended State Observer (ESO) is 

designed to estimate 𝑓  such that we can compensate the 
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impact of the disturbance to the process. So, we design the 

control law as: 

 𝑢 = (𝑢0 − 𝑓)/𝑏0                                                                (8) 

to reduce the equation (4) to a form of: 

 𝑦̈(𝑡) ≈ 𝑢0           (9) 

which can be easily controlled. As stated above, ADRC 

requires little knowledge of the plant; all we need to know is 

the order of the plant and the value of the parameter 𝑏0. 

The ESO became more practical since a tuning method was 

proposed by Gao [24, 25]. The main idea is to use an 

augmented state-space model of equation (7) that includes 𝑓 

as an additional state. In particular, let:  

𝑥1 = 𝑦, 𝑥2 = 𝑦̇, 𝑥3 = 𝑓                                                    (10) 

Then the ESO can be designed as: 

{

𝑥̇̂1(𝑡) = 𝑥̂2(𝑡) + 𝑙1(𝑦(𝑡) − 𝑥̂1(𝑡))

𝑥̇̂2(𝑡) = 𝑥̂3(𝑡) + 𝑏0. 𝑢(𝑡) + 𝑙2(𝑦(𝑡) − 𝑥̂1(𝑡))

𝑥̇̂3(𝑡) = 𝑙3(𝑦(𝑡) − 𝑥̂1(𝑡))

                 (11) 

where 𝑙1 , 𝑙2 , 𝑙3  are observer parameters, 𝑥̂1 , 𝑥̂2 , 𝑥̂3  are 

estimated values of 𝑦, 𝑦̇, 𝑓 respectively. 

The control law in second-order ADRC is: 

 𝑢 = (𝑢0 − 𝑥̂3)/𝑏0                                                            (12) 

 𝑢0 = 𝐾𝑃(𝑟 − 𝑥̂1) − 𝐾𝐷 . 𝑥̂2                                        (13) 

With 𝑥̂3 ≈ 𝑓  obtained from ESO, (12) reduces (7) to an 

approximate double integral plant (9). Then, substituting (13-

10) to (9) yields the closed-loop dynamic characteristic: 

 𝑦̈(𝑡) ≈ 𝑢0 = 𝐾𝑃(𝑟(𝑡) − 𝑦(𝑡)) − 𝐾𝐷 . 𝑦̇(𝑡)         (14) 

where 𝑟 is the setpoint, 𝐾𝑃 and 𝐾𝐷 are controller parameters. 

Taking the Laplace Transform of (14-11), one has the close-

loop transfer function as follows: 

 𝐺𝑐𝑙(𝑠) = 𝑌(𝑠)/𝑅(𝑠) = 𝐾𝑃/(𝑠
2 + 𝐾𝐷 . 𝑠 + 𝐾𝑃)  (15) 

So 𝐾𝑃 and 𝐾𝐷 can be easily calculated for the process to be 

controlled.  

The structure of second-order ADRC is illustrated in Figure 2 

 

Figure 2: Second order ADRC control scheme 

3.1.2. Using ADRC to control trolley position 

To apply the ADRC presented in previous section, rewriting 

(1) to the same form as (4): 

𝑥̈ = −[(𝑚1 +𝑚2)𝑙1(𝑐𝑜𝑠𝜃1𝜃̈1 − 𝜃1̇
2
𝑠𝑖𝑛𝜃1) + 𝑚2𝑙2𝑐𝑜𝑠𝜃2𝜃̈2 

−𝑚2𝑙2𝑠𝑖𝑛𝜃2𝜃̇2
2
]/(𝑚 +𝑚1 +𝑚2) + [1/(𝑚 +𝑚1 +𝑚2)]𝐹 

     = 𝑓(𝑡) + 𝑏0. 𝑢(𝑡)                                                             (16) 

where  

• 𝑓(𝑡) = −[(𝑚1 +𝑚2)𝑙1(𝑐𝑜𝑠𝜃1𝜃̈1 − 𝜃1̇
2
𝑠𝑖𝑛𝜃1) 

          +𝑚2𝑙2𝑐𝑜𝑠𝜃2𝜃̈2 −𝑚2𝑙2𝑠𝑖𝑛𝜃2𝜃̇2
2
]/(𝑚 + 𝑚1 +𝑚2) 

• 𝑢(𝑡) = 𝐹 

• 𝑏0 =
1

(𝑚+𝑚1+𝑚2)
 

 

According to [26], the ADRC’s parameters can be obtained as 

follow: 

• Get the desired 2% settling time 𝑇𝑠𝑒𝑡𝑡𝑙𝑒. 

• Choose 𝐾𝑃 and 𝐾𝐷 to get a negative-real double pole, 

𝑠1
2

𝐶𝐿 = 𝑠𝐶𝐿: 

   𝐾𝑃 = (𝑠
𝐶𝐿)2, 𝐾𝐷 = −2. 𝑠

𝐶𝐿                  (17) 

 with 𝑠𝐶𝐿 = −
6

𝑇𝑠𝑒𝑡𝑡𝑙𝑒
.         

• Since the observer dynamics must be fast enough, 

the observer poles 𝑠1
2

𝐸𝑆𝑂  must be placed left of the 

closed-loop 𝑠𝐶𝐿 , for suggestion: 

 𝑠1
2

𝐸𝑆𝑂 = 𝑠𝐸𝑆𝑂 ≈ (3…10). 𝑠𝐶𝐿                     (18) 

• The observer parameters can be chosen as: 

 𝑙1 = −3. 𝑠
𝐸𝑆𝑂, 𝑙2 = 3. (𝑠

𝐸𝑆𝑂)2, 𝑙3 = (𝑠𝐸𝑆𝑂)3     (19) 

3.2.  Vibration Suppression 

3.2.1. Input Shaping concept 

The traditional input shaping [27] can be summarized as 

follow. Let’s consider the second-order vibratory system with 

the transfer function as 
𝑌(𝑠)

𝑈(𝑠)
=

𝜔𝑛
2

𝑠2+2𝜁𝜔𝑛+𝜔𝑛
2       (20) 

where 𝜔𝑛  is the undamped natural frequency and 𝜁  is the 

damping ratio. If we apply an impulse 𝑢𝑖(𝑡) = 𝐴𝑖𝛿(𝑡 − 𝑡𝑖)  at 

time ti with magnitude Ai, then the output of the vibratory 

system is 

𝑦𝑖(𝑡) = 𝐴𝑖
𝜔𝑛

√1−𝜁2
𝑒−𝜁𝜔𝑛(𝑡−𝑡𝑖) sin (𝜔𝑛√1 − 𝜁

2(𝑡 − 𝑡𝑖))   (21) 

When an impulse is applied, the system vibrates, as shown in 

(21). The idea of the input shaping method is to apply a series 

of impulses with appropriate magnitude in the proper time to 

the system. Then, those impulse responses eliminate each 

other, and the vibration is suppressed. The value of magnitude 

Ai and time ti can be determined by setting the combination 

response equal to zero when the last impulse is applied. In the 

case of two impulse series called Zero Variation (ZV), the 

result is as follows: 

 {
𝐴1 =

1

1+𝐾
, 𝑡1 = 0

𝐴2 =
𝐾

1+𝐾
, 𝑡2 =

𝜋

𝜔𝑑

                                                         (22) 

where  

 𝐾 = exp (−
𝜋𝜁

√1−𝜁2
), 𝜔𝑑 = 𝜔𝑛√1 − 𝜁

2              (23) 

To increase the robustness with the modeling error, zero 

vibration and derivative (ZVD) shaper with three impulses is 

proposed: 

 

{
 
 

 
 𝐴1 =

1

1+2𝐾+𝐾2
, 𝑡1 = 0

𝐴2 =
2𝐾

1+2𝐾+𝐾2
, 𝑡2 =

𝜋

𝜔𝑑

𝐴3 =
𝐾2

1+2𝐾+𝐾2
, 𝑡3 =

2𝜋

𝜔𝑑

                                      (24) 

 

And zero vibration derivative and derivative (ZVDD) shaper 

with four impulses: 

 

{
  
 

  
 𝐴1 =

1

1+3𝐾+3𝐾2+𝐾3
, 𝑡1 = 0

𝐴2 =
3𝐾

1+3𝐾+3𝐾2+𝐾3
, 𝑡2 =

𝜋

𝜔𝑑

𝐴3 =
3𝐾2

1+3𝐾+3𝐾2+𝐾3
, 𝑡3 =

2𝜋

𝜔𝑑

𝐴4 =
𝐾3

1+3𝐾+3𝐾2+𝐾3
, 𝑡4 =

3𝜋

𝜔𝑑

                                (25) 
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3.2.2. Impulse Vector for Input Shaping control 

Another approach to dealing with the input shaping technique 

is an impulse vector [22]. The idea of the impulse vector 

approach is to present the impulse response of a vibratory 

system by a vector. The response (21) of the vibratory system 

with impulse input 𝑢𝑖(𝑡) = 𝐴𝑖𝛿(𝑡 − 𝑡𝑖) can be presented as a 

vector in a 2D polar coordinate system with a magnitude 𝐼𝑖  
and angle 𝜃𝑖 as shown in Figure 3, with 

𝐼𝑖 = 𝐴𝑖𝑒
𝜁𝜔𝑛𝑡𝑖,  𝜃𝑖 = 𝜔𝑑𝑡𝑖,         (26) 

For a positive impulse (𝐴𝑖 > 0 ), the initial point of the 

impulse vector is located at the origin of the polar coordinate 

system, while for a negative impulse (𝐴𝑖 < 0), the terminal 

point of the impulse vector is located at the origin. 

Using vector diagram approach, ZV and ZVDn shapers can be 

redesigned [22]. For the ZV shaper, let the first impulse vector 

be located at 0 on an impulse vector diagram because the first 

impulse’s time location is 𝑡1 = 0. The second impulse vector 

must be located at π with the same magnitude. ZVD, ZVDD, 

and ZVDDD shapers can be presented in Figure 4. ZVD 

shapers have three impulse vectors in which the first impulse 

vector is located at 0, the second at π, and the third at 2π. The 

magnitude ratio of the ZVD shaper is 𝐼1: 𝐼2: 𝐼3 = 1: 2: 1 . 

ZVDD shaper has four impulse vectors in which the first 

impulse vector is located at 0, the second at π, the third at 2π, 

and the fourth at 3π. The magnitude ratio of the ZVDD shaper 

is 𝐼1: 𝐼2: 𝐼3: 𝐼4 = 1: 3: 3: 1. 

3.2.3. ETMn input shaper 

The ETMn input shaper arranges the same magnitude impulse 

vectors and angle inside a 2π circle time. The digit "n" in 

"ETMn" is a positive integer, representing the number of 

participating vectors. The amplitude and phase angle of the 

ETMn method are listed below [22]: 

𝜃1 = 0, 𝜃2 =
2𝜋

𝑛−1
, … , 𝜃𝑛−1 =

(𝑛−2).2𝜋

𝑛−1
, 𝜃𝑛 = 2𝜋     (27) 

           𝐼2 = 𝐼3 = ⋯ = 𝐼𝑛−1 = 𝐼1 + 𝐼𝑛, 𝐼𝑛 = 𝑚𝐼1(𝑚 > 0) (28) 

 

The advantage of this ETMn method is that no matter how 

many impulse vectors are present, these vectors all fit inside 

a 2π circle time, which is equivalent to the shaping time of the 

ZVD method. 

The ETM4 shaper has four impulse vectors, as shown in 

Figure 5. The impulse instants 𝑡1, 𝑡2, 𝑡3, 𝑡4  of the ETM4 

shaper are obtained by the angles of the impulse vectors in 

equation (27). The impulse magnitudes 𝐴1, 𝐴2, 𝐴3, 𝐴4 of the 

ETM4 shaper are obtained by solving: 

{

𝐼2 = 𝐼3 = 𝐼1 + 𝐼4,  𝐼4 = 𝑚𝐼1
𝐼1 = 𝐴1, 𝐼2 = 𝐴2𝑒

𝜁𝜔𝑛𝑡2 , 𝐼3 = 𝐴3𝑒
𝜁𝜔𝑛𝑡3 , 𝐼4 = 𝐴4𝑒

𝜁𝜔𝑛𝑡4 
𝐴1 + 𝐴2+ 𝐴3 + 𝐴4 = 1

 

(29) 

The resulting ETM4 shaper is: 

 

[
𝑡𝑖
𝐴𝑖
] = [

0
𝐼

1+𝑚

2𝜋

3𝜔𝑑
𝐼

𝐾
2
3

4𝜋

3𝜔𝑑
𝐼

𝐾
4
3

 

2𝜋

𝜔𝑑
𝑚𝐼

(1+𝑚)𝐾2

]                    (30) 

where 

𝐼 =
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2
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4
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Similarly, we get the result with ETM5: 
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where 

𝐼 =
(1+𝑚)𝐾2
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1
2+𝐾+𝐾

3
2)+𝑚

, 𝐾 = 𝑒

𝜁𝜋

√1−𝜁2
  

 

 
Figure 3: Impulse functions and their corresponding impulse vectors. 

 a) Positive impulse           b) Negative impulse  

 

 
Figure 4: Impulse vector diagrams for the ZV and ZVDn shapers 

 

 
Figure 5: The impulse vector diagrams of the ETMn shapers.  

a) ETM4 shaper             b) ETM5 shaper  
 

To obtain the optimal value of m, a performance index J is 

defined as the integral along the sensitivity curve with a 

sensitivity ratio 
𝜔𝑛

𝜔̂𝑛
 in a considered range, for example, 0.2 to 

1.8. 

𝐽 = ∫ 𝑉(𝑟,𝑚)𝑑𝑟
𝑟𝑢
𝑟𝑙

, 𝑟 =
𝜔𝑛

𝜔̂𝑛
, 𝑚 =

𝐼𝑛

𝐼1
, 𝑟𝑙 = 0.2, 𝑟𝑢 = 1.8     

(32) 
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Table 1 represents optimal values 𝑚𝑜𝑝𝑡  for various ETMn 

shapers [22]. 

Table 1: The optimal values 𝒎𝒐𝒑𝒕 for various ETMn shapers 

𝜁 0 0.01 0.05 0.1 0.2 0.3 0.4 0.5 

𝑚𝑜𝑝𝑡, 

ETM4 

1 0.99 0.95 0.90 0.79 0.69 0.56 0.40 

𝑚𝑜𝑝𝑡, 

ETM5 

1 0.98 0.92 0.85 0.69 0.53 0.34 0.08 

3.3. ADRC and Input shaping combination for double 

pendulum crane control 

The control scheme is proposed in Figure 6, where ADRC is 

used to control the trolley position, and IS is used to suppress 

the vibration of the payload. Despite parameter uncertainty 

and disturbance, the ADRC guarantees to precisely control 

the trolley position. However, the ADRC control cannot 

suppress the payload vibration since it does not use vibration 

feedback. Thus, IS control is used as a filter to suppress the 

payload vibration.   As mentioned in the previous section, the 

sway angles of the double-pendulum crane include two 

vibration frequencies, so to suppress the vibration of the 

payload, we need two shapers. The first shaper suppresses the 

first vibration, and the second shaper suppresses the second 

vibration. The final shaper is the convolution of two shapers 

corresponding to two vibration frequencies.  

 

 
Figure 6: ADRC with IS controller 

4. Validation via Simulation 

To verify the effectiveness of the proposed control scheme, a 

simulation is conducted through Matlab/Simulink 

environment. Table 2 shows the system parameters [28]. 

Table 2: System parameters 

𝑚(kg) 20 𝑚2(kg) 5 𝑙2(m) 0.2 xref(m) 1.5 

𝑚1(kg) 5 𝑙1(m) 2 𝑔(m/s2) 9.8 - - 

 

The parameters for ADRC controller design are chosen as  

𝑏0 = 1/(𝑚 +𝑚1 +𝑚2) = 0.0333 , 𝑇𝑠𝑒𝑡𝑡𝑙𝑒 = 8(𝑠)  and 

𝑠𝐸𝑆𝑂 = 10𝑠𝐶𝐿  

The ZVD and ETM4 shaper parameters are given in Table 3 

and 4 respectively. 

Table 3: ZVD parameters 

1st shaper 2nd shaper 

𝐴1 = 0.25 𝑡1 = 0 𝐴1 = 0.25 𝑡1 = 0 

𝐴2 = 0.5 𝑡2 = 1.456 𝐴2 = 0.5 𝑡2 = 0.309 

𝐴3 = 0.25 𝑡3 = 2.912 𝐴3 = 0.25 𝑡3 = 0.618 

 

Table 4: ETM4 parameters 

1st shaper 2nd shaper 

𝐴1 = 1 𝑡1 = 0 𝐴1 = 0.1 𝑡1 = 0 

𝐴2 = 2 𝑡2 = 0.97 𝐴2 = 0.2 𝑡2 = 0.20 

𝐴3 = 2 𝑡3 = 1.94 𝐴3 = 0.2 𝑡3 = 0.412 

𝐴4 = 1 𝑡4 = 2.912 𝐴4 = 0.1 𝑡4 = 0.618 

 

We will compare the performance of unshaped+ADRC 

controller with ZVD+ADRC controller and ETM4+ADRC 

controller. 

In the first simulation, the trolley displacement and sway 

angle with three considered controllers are shown in Figure 7 

and 8 respectively. For trolley displacement, all controllers 

have good performance. ZVD+ADRC and ETM4+ADRC has 

the same response. For payload sway angle, except 

unshaped+ADRC controller, other controllers suppress 

vibration fast. Figure 9 is control signal of these controllers. 

 
Figure 7: Trolley position  

 
Figure 8: Crane sway angles 

 

The next simulation will compare ZVD shaper and ETM4 

shaper with payload mass variation from 5(kg) to 2(kg) and 

20(kg) in Figure 10 to 15. All the controller parameters will 

be kept unchanged to examine the robustness of two 
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controllers. It can be seen that, with payload variation, ETM4 

controller and ZVD controller show robustness in vibration 

suppression. Besides, when the payload change, the 

ETM4+ADRC controller suppress the vibration better than 

the ZVD+ADRC controller. 

 
Figure 9: Control signal 

 
Figure 10: Trolley position when payload is 2(kg) 

 

 

 
Figure 11: Crane sway angles when payload is 2(kg) 

 

 
Figure 12: Control signal u when payload is 2(kg) 

 
Figure 13: Trolley position when the payload is 20(kg) 

 

 
 

Figure 14: Crane sway angles when the payload is 20(kg) 
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Figure 15: Control signal u when the payload is 20(kg) 

 

5. Conclusion 

The article has presented the combination of linear ADRC and 

IS-ETM4 input shaper for vibration suppression control of a 

double-pendulum crane system. The proposed controller has 

a simple design process while guaranteeing precise position 

control of the trolley and vibration suppression of the payload. 

The effectiveness of the proposed control algorithm has been 

validated by simulation. In the next step, the practical 

implementation of this approach will be done. The problem of 

reducing residual vibration caused by disturbance will be 

considered. In addition, its applications in other systems can 

also be considered. 
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