Development of Recurrent Perceptron Learning Algorithm for Second-Order Cellular Neural Networks

Authors

  • Duc Anh Duong Viện Nghiên cứu Điện tử, Tin học, Tự động hóa
  • Nguyen Quang Hoan Học viện Bưu chính Viễn thông
  • Nguyen Tai Tuyen Học viện Bưu chính Viễn thông
  • Lai Thi Van Quyen Viện Nghiên cứu Điện tử, Tin học, Tự động hóa
  • Hoang Tuan Dat Viện Nghiên cứu Điện tử, Tin học, Tự động hóa

Keywords:

MATLAB, recurrent perceptron learning, second order cellular neural networks, templates, weights

Abstract

This paper develops a method to estimate the set of weights for SOCNNs using Recurrent Perceptron Learning Algorithm. By integrating not only the First-order input and output signals but also the Second-order input and output signals into a general input signal, the research team transformed the networks of SOCNNs into an equivalent structure with the traditional Perceptron Networks. From there, the parameters of SOCNNs can be determined by the supervised learning method. The paper also simulates SOCNNs on MATLAB to check the correctness and efficiency of the proposed algorithm.

Downloads

Download data is not yet available.

Published

10-02-2023

How to Cite

Duong, D. A., Nguyen Quang Hoan, Nguyen Tai Tuyen, Lai Thi Van Quyen, & Hoang Tuan Dat. (2023). Development of Recurrent Perceptron Learning Algorithm for Second-Order Cellular Neural Networks. Journal of Measurement, Control, and Automation, 3(3), 64-72. Retrieved from https://mca-journal.org/index.php/mca/article/view/152