Development of Recurrent Perceptron Learning Algorithm for Second-Order Cellular Neural Networks
Từ khóa:
MATLAB, recurrent perceptron learning, second order cellular neural networks, templates, weightsTóm tắt
This paper develops a method to estimate the set of weights for SOCNNs using Recurrent Perceptron Learning Algorithm. By integrating not only the First-order input and output signals but also the Second-order input and output signals into a general input signal, the research team transformed the networks of SOCNNs into an equivalent structure with the traditional Perceptron Networks. From there, the parameters of SOCNNs can be determined by the supervised learning method. The paper also simulates SOCNNs on MATLAB to check the correctness and efficiency of the proposed algorithm.
Downloads
Tải xuống
Đã Xuất bản
Cách trích dẫn
Số
Chuyên mục
Giấy phép
Bản quyền (c) 2023 Chuyên san Đo lường, Điều khiển và Tự động hóa
Tác phẩm này được cấp phép theo Giấy phép quốc tế Creative Commons Attribution-NonCommercial-NoDeri Phái sinh 4.0 .